Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A surface in $ S\sp{3}$ is tame if it can be deformed into each complementary domain


Author: John Hempel
Journal: Trans. Amer. Math. Soc. 111 (1964), 273-287
MSC: Primary 54.75
DOI: https://doi.org/10.1090/S0002-9947-1964-0160195-7
MathSciNet review: 0160195
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. W. Alexander, On the subdivision of 3-space by polyhedra, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 10-19.
  • [2] R. H. Bing, Conditions under which a surface in $ {E^3}$ is tame, Fund. Math. 47 (1959), 105-139. MR 0107229 (21:5954)
  • [3] -, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294-305. MR 0131265 (24:A1117)
  • [4] -, Each disk in each 3-manifold is pierced by a tame arc, Amer. Math. Soc. Notices 6 (1959), 510.
  • [5] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton Univ. Press, Princeton, N.J., 1952. MR 0050886 (14:398b)
  • [6] Ralph H. Fox and Emil Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979-990. MR 0027512 (10:317g)
  • [7] W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press, Princeton N. J., 1948. MR 0006493 (3:312b)
  • [8] E. E. Moise, Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2) 56 (1952), 96-114. MR 0048805 (14:72d)
  • [9] C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1-26. MR 0090053 (19:761a)
  • [10] D. E. Sanderson, Isotopies in 3-manifolds. I, Proc. Amer. Math. Soc. 8 (1957), 912-922. MR 0090052 (19:760d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.75

Retrieve articles in all journals with MSC: 54.75


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1964-0160195-7
Article copyright: © Copyright 1964 American Mathematical Society

American Mathematical Society