Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Topological spaces which admit unisolvent systems


Author: John A. Lutts
Journal: Trans. Amer. Math. Soc. 111 (1964), 440-448
MSC: Primary 54.28
DOI: https://doi.org/10.1090/S0002-9947-1964-0163286-X
MathSciNet review: 0163286
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] N. I. Achieser, Theory of approximation, Ungar, New York, 1956. MR 0095369 (20:1872)
  • [2] S. N. Bernstein, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle, Gauthier-Villars, Paris, 1926.
  • [3] R. C. Buck, Linear spaces and approximation theory, On Numerical Analysis, pp. 11-23, Univ. of Wisconsin Press, Madison, Wis., 1959. MR 0101611 (21:420)
  • [4] -, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95-104. MR 0105611 (21:4350)
  • [5] Leon W. Cohen, A characterization of those subsets of metric separable space which are homeomorphic with subsets of the linear continuum, Fund. Math. 14 (1929), 281-303.
  • [6] Philip C. Curtis, Jr., N-parameter families and best approximation, Pacific J. Math. 9 (1959), 1013-1027. MR 0108670 (21:7385)
  • [7] Alfred Haar, Die Minkowskische Geometrie und die Annäherung an stetige Funktionen, Math. Ann. 78 (1918), 294-311. MR 1511900
  • [8] W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, N. J., 1948. MR 0006493 (3:312b)
  • [9] C. Kuratowski, Topologie. II, Monogr. Mat. Tom. XXI, Warsaw, 1950.
  • [10] John C. Mairhuber, On Haar's theorem concerning Chebychev approximation problems having unique solutions, Proc. Amer. Math. Soc. 7 (1956), 609-615. MR 0079672 (18:125g)
  • [11] Th. Motzkin, Approximation by curves of a unisolvent family, Bull. Amer. Math. Soc. 55 (1949), 789-793. MR 0031111 (11:101f)
  • [12] R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255. MR 0113125 (22:3964)
  • [13] I. J. Schoenberg, On the question of unicity in the theory of best approximation, Ann. New York Acad. Sci. 86 (1960), 682-692. MR 0120496 (22:11249)
  • [14] I. J. Schoenberg and C.-T. Yang, On the unicity of solutions of problems of best approximation, Ann. Mat. Pura Appl. Ser. IV 54 (1961), 1-12. MR 0141927 (25:5324)
  • [15] K. Sieklucki, Topological properties of sets admitting the Tschebycheff systems, Bull. Acad. Polon. Sci. Sér. Sci. Math. Phys. Astronom. 6 (1958), 603-606. MR 0100192 (20:6625)
  • [16] H. E. Vaughan, On locally bicompact spaces, Fund. Math. 31 (1938), 15-21.
  • [17] A. J. Ward, The topological characterization of an open linear interval, Proc. London Math. Soc. (2) 41 (1936), 191-198.
  • [18] Gordon T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ. Vol. 28, Amer. Math. Soc., Providence, R.I., 1942. MR 0007095 (4:86b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.28

Retrieve articles in all journals with MSC: 54.28


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1964-0163286-X
Article copyright: © Copyright 1964 American Mathematical Society

American Mathematical Society