COMPLETELY MONOTONE SEQUENCES
AS INVARIANT MEASURES(1)

BY
RICHARD SCOVILLE

Introduction. A completely monotone sequence $a = (a_0, a_1, a_2, \cdots)$ of real
numbers is a sequence which satisfies the conditions

$$(\Delta^n a)_k \geq 0 \quad (n = 0, 1, 2, \cdots; \quad k = 0, 1, 2, \cdots)$$

where the operator Δ, acting on any sequence a, is the sequence Δa defined by

$$(\Delta a)_k = a_k - a_{k+1} \quad (k = 0, 1, 2, \cdots).$$

During the first part of the paper we will suppose that the completely monotone
sequence a also satisfies

$$(2) \quad \sum_{n=0}^{\infty} a_n = 1.$$

Using the sequence a, we will construct a probability space (X, \mathcal{B}, μ) and a
measure-preserving transformation T on it. This transformation will not, in gen-
eral, be ergodic. We then make use of the Kryloff-Bogoliouboff decomposition [4]
(as extended by Oxtoby [5]) of a measure into its ergodic parts. Writing μ as an
integral of measures for which T is ergodic, and observing the effect of this de-
composition on the sequence a, we obtain the classical reduction of a to the form

$$a_k = \int_0^1 t^{k} dF(t) \quad (k = 0, 1, 2, \cdots).$$

An inversion formula, similar to Feller's [2], giving F in terms of a can also be
obtained in this way. In the last part of the paper we investigate the transformation
T itself, and leave several interesting questions unanswered.

This paper is the major part of the author's dissertation prepared at Yale
University under the direction of S. Kakutani, whom I wish to thank for his
advice, encouragement and great skill.

(X, \mathcal{B}, μ) and the transformation T. Let us assume, then, that a sequence a

satisfying (1) and (2) has been given and proceed with the construction of (X, \mathcal{B}, μ).

Received by the editors April 15, 1963.

(1) This research was supported in part by the United States Air Force under Grant AF
AFOSR 61–51, monitored by the Air Force Office of Scientific Research of the Air Research and
Development Command.

318
Let I_∞ be the one-point compactification of the non-negative integers, with ∞ the added point. We form the compact space

$$X' = \bigoplus_{i=1}^\infty X_i \quad (X_i = I_\infty, i = 1, 2, 3, \ldots)$$

and consider the closed subset X' of X consisting of all sequences in X which are increasing (not necessarily strictly increasing), thinking of ∞ as being greater than every integer.

By a rectangle $(r_1, r_2, r_3, \ldots, r_k)$ where $0 \leq r_1 \leq r_2 \leq \cdots \leq r_k$, is meant all sequences in X' beginning with $r_1, r_2, r_3, \ldots, r_k$, i.e., all sequences ω in X for which $\omega_i = r_i (i = 1, 2, 3, \ldots, k)$. The measure of a rectangle $R = (r_1, r_2, \ldots, r_k)$ is defined as follows:

$$\mu(R) = \begin{cases} (\Delta^{k-1} a)_{r_k} & \text{if } r_k \neq \infty, \\ 0 & \text{if } r_k = \infty. \end{cases}$$

(3)

Let \mathcal{A} be the (finitely additive) algebra consisting of all sets of X' which depend on only a finite number of coordinates, i.e., $\mathcal{A} = \bigcup \mathcal{A}_n$ where \mathcal{A}_n consists of sets which can be written as the union of rectangles of length n. The measure of any set in \mathcal{A} may now be defined by writing the set as a union of disjoint rectangles. This measure can be extended to a countably additive measure (again called μ) defined on \mathcal{B}, the smallest σ-field containing \mathcal{A}. Since μ is a regular measure on \mathcal{A}, this can be accomplished, for instance, by means of a theorem of Alexandroff [2, p. 138].

We let X be the subset of X' consisting of those sequences in which ∞ does not appear. The complement of X in X' may be written

$$X' = \bigcup_{n=1}^\infty \bigcup_{i_1 \leq i_2 \leq \cdots \leq i_n} (i_1, i_2, \ldots, i_n, \infty).$$

This set clearly has measure zero, no matter what the sequence a may be, so we see that X has measure one. From now on when we speak of rectangles we mean rectangles restricted to the space X.

The transformation T is defined at a point $\omega = (\omega_1, \omega_2, \omega_3, \ldots)$ of X as follows:

$$T \omega = \begin{cases} (0,0,\ldots,0, \omega_n + 1, \omega_{n+1}, \ldots) & \text{if } \omega_1 = \omega_2 = \omega_3 = \cdots, \\ (0,0,0,\ldots) & \text{if } \omega_1 = \omega_2 = \omega_3 = \cdots. \end{cases}$$

(4)

Suppose $R = (r_1, r_2, \ldots, r_n)$ is a rectangle in X. If $r_1 \neq 0$, the image of R under T^{-1} is again a rectangle: $(r_1 - 1, r_2, \ldots, r_n)$. If $0 = r_1 = r_2 = \cdots = r_k$ but $r_{k+1} \neq 0$ where $k < n$, the inverse image of R is the rectangle

$$(r_{k+1} - 1, r_{k+1} - 1, \ldots, r_{k+1} - 1, r_{k+2}, \ldots, r_n).$$
If, finally, \(0 = r_1 = r_2 = \cdots = r_n \), the inverse image of \(R \) is, except for the constant sequences, the disjoint union

\[
\bigcup_{p=1}^{\infty} \bigcup_{j=1}^{\infty} \bigcup_{i=0}^{j-1} (i_1, \ldots, i, j).
\]

Hence in any case the inverse image under \(T \) of any rectangle \(R \) is essentially a union of rectangles and so in particular is measurable. It is possible to calculate the measure of \(T^{-1}R \) directly from formula (3) to show that \(T \) is measure-preserving, but the following "geometric" description of \(T \) is more enlightening but not essential to the development of the paper. This idea has been used before, for instance in [1].

We construct a sequence of line segments, \(B_0, B_1, B_2, \cdots \), one above the other as in Figure 1a so that the segment \(B_n \) has length \(a_n \). Let us call the object so obtained a building and also regard it as a measure space by giving to each linear Borel set in the building its ordinary (linear) Lebesgue measure. Now if there were a measure-preserving transformation, say \(S \), defined on \(B_0 \), we could construct a measure-preserving transformation \(T \) on the building \(B \) by sending any point to the point directly above on the next floor, if possible, otherwise by descending straight down to \(B_0 \) and moving by \(S \). Then \(S \) is simply the transformation induced by \(T \) on \(B_0 \), of which we will speak later. What remains then is to define the transformation \(S \) on \(B_0 \).

We can partially define \(S \) on \(B_0 \) by writing \(B_0 \) itself as a building as in Figure 1b so that the segment \(B'_n \) has length \(a_n - a_{n+1} \). \(S \) is now partially defined on \(B_0 \) simply by rising one floor, if possible. To continue its definition, we must write \(B'_0 \) as a building in a way similar to the way we wrote \(B_0 \) as a building. Eventually then, \(S \) and hence \(T \) will be completely defined except perhaps on a set of measure zero. That we continue to get a building at each stage is due to the requirement (1) on the sequence \(a \). The floors of the \(n \)th stage building will have lengths \((\Delta^{n-1}a)_0, (\Delta^{n-1}a)_1, \cdots \).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The transformation T defined on X is said to be conjugate to the transformation S on Y if there is a 1-1 measure-preserving map ϕ from (almost all of) X onto (almost all of) Y such that ϕ^{-1} is measurable and $T = \phi^{-1} \circ S \circ \phi$. We can now show the relation between the two measure-preserving transformations defined so far.

Lemma. The transformation T defined on B is conjugate to the transformation T defined on X by (4).

Proof. We can give coordinates to a point ω in B. Let ω_1 be the integer satisfying $\omega \in B_{\omega_1}$. Drop ω to the first floor of B and call this point ω'. Let ω_2 be the integer satisfying $\omega' \in B'_{\omega_2}$. Drop ω' to the first floor of B_0 and call this point ω''. Let ω_3 satisfy $\omega'' \in B''_{\omega_3}$, etc. This correspondence $\omega \to (\omega_1, \omega_2, \cdots)$ from B to X is easily seen to establish the conjugacy of T on B and T on X.

The measures μ for which T is ergodic. Since we will have to speak of several completely monotone sequences and their corresponding measures, we now write μ_α for the measure defined on X by means of the sequence α, and T_α for the corresponding transformation previously called simply T. Of course all the transformations T_α are identical, but we may wish to distinguish a particular measure μ_α which T preserves. In this case, we write T_α. For instance we could ask are T_α and T_β conjugate?

If α and β are completely monotone sequences which also satisfy (2), clearly any convex combination $\alpha \alpha + \beta \beta$ is another. In fact, because of the linearity of Δ, (5) $\alpha \mu_\alpha + \beta \mu_\beta = \mu_{\alpha \beta + \beta \beta}$.

Also, given a completely monotone sequence $\alpha \neq (1,0,0,\cdots)$, we can form two others, namely $\sigma \alpha$ and $\tau \alpha$ defined by

\begin{align}(\sigma \alpha)_n &= a_{n+1}/(1 - a_0), \\
(\tau \alpha)_n &= (a_n - a_{n+1})/a_0 \quad (n = 0,1,2,\cdots).
\end{align}

These sequences also satisfy (2) if α does.

Let $T_\alpha | C$ be the transformation induced by T_α on the subset C of X of all sequences in X having first coordinate zero, and let $T_\alpha | \bar{C}$ be the induced transformation on $\bar{C} = X - C$. Hence for instance $T_\alpha | C$ is defined at a point ω of C by $T_\alpha | C(\omega) = T^k \omega$ where k is the first positive integer for which $T^k(\omega) \in C$. $T_\alpha | C$ is a measure preserving transformation on C. We call the measure ρ defined on subsets E of C by $\rho(E) = \mu_\alpha(E)/\mu_\alpha(C)$ the induced measure on C.

Lemma. Suppose $\alpha \neq (1,0,0,\cdots)$. Then the transformation $T_\alpha | C$ on C with its induced measure, is conjugate to the transformation $T_{\alpha \alpha}$ on X. Also, $T_\alpha | \bar{C}$ on \bar{C} with its induced measure is conjugate to $T_{\alpha \alpha}$.
Proof. A glance at the buildings is probably enough to convince the reader of this fact, but we will construct mappings $\phi: C \to X$ and $\psi: \bar{C} \to X$ which give the conjugacy explicitly. Let $\phi(\omega) = (\omega_2, \omega_3, \cdots), \omega \in C$ and $\psi(\omega) = (\omega_1 - 1, \omega_2 - 1, \cdots), \omega \in \bar{C}$. Suppose $R = (r_1, r_2, \cdots, r_k)$ is a rectangle in X. We must show that

$$\mu_\phi(R) = \mu_\phi(\psi^{-1}R) / \mu_\phi(C)$$

and

$$\mu_\psi(R) = \mu_\psi(\psi^{-1}R) / \mu_\psi(\bar{C}).$$

Since $\phi^{-1}(R) = (0, r_1, r_2, \cdots, r_k)$, from (3) and (6) we get

$$\mu_\phi(R) = (\Delta^{k-1}a)_{r_k} = (1 / a_0) (\Delta^k a)_{r_k}$$

$$= (1 / \mu_\phi(C)) \mu_\phi(\psi^{-1}R).$$

Similarly, $\psi^{-1}(R) = (r_1 + 1, r_2 + 1, \cdots, r_k + 1)$ so that

$$\mu_\psi(R) = (\Delta^{k-1}a)_{r_k} = (1 / (1 - a_0)) (\Delta^{k-1}a)_{r_k+1} = (1 / \mu_\psi(\bar{C})) \mu_\psi(\psi^{-1}(R)).$$

These equations show that ϕ and ψ are indeed measure-preserving isomorphisms between C with its induced measure and X, and between \bar{C} with its induced measure and X, resp. If $\omega = (0, \omega_2, \omega_3, \cdots)$ is any point in C, we see that $\phi \circ T_a | C(\omega) = T(\omega_2, \omega_3, \cdots) = T \circ \phi(\omega) = T_{\phi a} \circ \phi(\omega)$ and in the same way, we can show that $\psi \circ T_a | \bar{C} = T_{\psi a} \circ \psi$, proving the lemma.

Lemma. If T_a is ergodic, then a is of the form

$$(7) \quad a_n = \theta^n (1 - \theta) \quad (n = 0, 1, 2, \cdots)$$

for some θ, $0 \leq \theta < 1$. (We set $\theta^0 = 1$).

Proof. Suppose T_a is ergodic. If $a = (1, 0, 0, \cdots)$ then certainly a has the form required in the lemma. We exclude this case from what follows. Hence the induced transformations $T_a | C$ and $T_a | \bar{C}$ are defined, and they also are ergodic, since any transformation induced by an ergodic transformation is itself ergodic. Now by the previous lemma these induced transformations are conjugate to $T_{\phi a}$ and $T_{\psi a}$ respectively so that $T_{\phi a}$ and $T_{\psi a}$ are ergodic. Or what comes to the same thing T is ergodic with respect to the three measures $\mu_{\phi a}, \mu_{\phi a}$ and $\mu_{\psi a}$. But by (5)

$$\mu_a = (1 - a_0) \mu_{\phi a} + a_0 \mu_{\psi a}.$$ This implies, as is well known, that $\mu_a = \mu_{\phi a} = \mu_{\psi a}$. In particular, $a_n = a_{n+1} / (1 - a_0)$, so that $a_n = (1 - a_0)^n a_0 (n = 0, 1, 2, \cdots)$. Setting $\theta = 1 - a_0$, we get the lemma. The measure μ_a, where a is given by (7), will sometimes be written μ_θ.

We conclude this section with one more lemma.

Lemma. If μ is a probability measure on X for which T is measure-preserving, then μ is of the form μ_a for some a satisfying (1) and (2).
Proof. We must set \(a_n = \mu(n) \), where \((n)\) is the rectangle consisting of all sequences in \(X \) beginning with \(n \). Given any rectangle \((r_1, r_2, \ldots, r_k)\), we may write it as the image, under an appropriate power of \(T^{-1} \), of the rectangle \((r_k, r_k, \ldots, r_k)\).

Hence
\[
\mu(r_1, r_2, \ldots, r_k) = \mu(r_k, r_k, \ldots, r_k).
\]

Now by induction on \(n \) we can prove that
\[
(A^a)_k = \mu(k, k, \ldots, k) \quad (k = 0, 1, 2, \ldots).
\]

For \(n = 0 \), this is just the definition of \(a_k \). Suppose \((8)\) is true for \(n = m - 1 \). Then
\[
(A^a)_k = (A^{m-1}a)_k - (A^{m-1}a)_{k+1}
\]
\[
= \mu(k, k, \ldots, k) - \mu(k + 1, k + 1, \ldots, k + 1)
\]
\[
= \sum_{i=k}^{\infty} \mu(k, k, \ldots, k, i) - \mu(k + 1, k + 1, \ldots, k + 1)
\]
\[
= \sum_{i=k+1}^{\infty} \mu(k, k, \ldots, k + 1, i) - \mu(k + 1, k + 1, \ldots, k + 1) + (k, k, \ldots, k)
\]
\[
= \sum_{i=k+1}^{\infty} \mu(k + 1, k + 1, \ldots, k + 1, i) - \mu(k + 1, k + 1, \ldots, k + 1)
\]
\[
+ \mu(k, k, \ldots, k) = \mu(k, k, \ldots, k).
\]

This proves \((8)\) for all \(n \) and hence proves the lemma.

The decomposition of \(\mu \). Let us first discuss the continuity properties of the transformation \(T \).

Lemma. The transformation \(T \) on the set \(X \) is continuous. Moreover, \(T \) restricted to the subset \(U \) of \(X \) consisting of unbounded points

\[
U = \{ \omega \in X : \lim_{n \to \infty} \omega_n = \infty \}
\]

is one-to-one and onto.

Proof. The second statement of the lemma is clear. To prove the first, suppose \(\rho \) is a point in \(X \) and that \(\rho^n \) is a sequence of points in \(X \) converging to \(\rho \). If \(\rho \) is
not a constant sequence, \(T \rho \) is determined by a finite number \(k \) of coordinates of \(\rho \), say \(\rho_1, \cdots, \rho_k \). But for large \(n \) the first \(k \) coordinates of \(\rho^n \) must also be \(\rho_1, \cdots, \rho_k \), and hence \(T(\rho^n) \) converges to \(T \rho \). On the other hand, if \(\rho \) is a constant sequence, the first \(l \) coordinates of \(\rho^n \) are eventually all the same so that \(T(\rho^n) \) converges to \((0,0,\cdots)\) which is of course \(T \rho \).

Thus we can say that the system \((T,U)\) is a Borel system. As Oxtoby has shown, the essential features of the Kryloff-Bogoliouboff decomposition remain valid in such a system. Let us emphasize the fact that the results of the Kryloff-Bogoliouboff paper do not apply to our situation directly, although perhaps through a modification of the space \(X \) (or of its topology) they could be made applicable.

The result that we make use of is this: to almost every point \(\omega \) of \(X \) (i.e., to every point in a set which has measure one under any invariant measure) we can assign an ergodic measure \(\mu_\omega \) in such a way that, for any bounded Borel-measurable function \(f \) on \(X \), the function

\[
\int fd\mu_\omega
\]

is measurable and, moreover, for any invariant measure \(\mu_\alpha \) on \(X \), we have

\[
\mu_\alpha(R) = \int_X \mu_\omega(R)d\mu_\alpha(\omega)
\]

for any rectangle \(R \) in \(X \).

Since \(\mu_\omega \) is ergodic, we have seen (7) that \(\mu_\omega = \mu_\theta \) for some \(\theta \) between 0 and 1. Let this number be \(\theta(\omega) \). If, in equation (9), we put for \(f \) the characteristic function of the rectangle \((0) \), we see that

\[
\theta(\omega) = 1 - \int_X fd\mu_\omega
\]

is a measurable function on \(X \). If we let \(R \) be the rectangle \((n) \), equation (10) yields

\[
a_n = \int_X \mu_{\theta(\omega)}(n)d\mu_\omega(\omega) = \int_X \theta(\omega)^n(1-\theta(\omega))d\mu_\omega(\omega).
\]

Let \(G_\omega(x) \) be the distribution function for \(\theta(\omega) \) with respect to the measure \(\mu_\omega \), i.e.,

\[
G_\omega(x) = \mu_\omega\{\theta(\omega) \leq x\}
\]

so that (11) becomes

\[
a_n = \int_0^1 t^n(1-t)dG_\omega(t) \quad (n = 0,1,2,\cdots).
\]

Setting \(F_\omega(x) = \int_0^x (1-t)dG_\omega(t) \) we get the usual form of the representation:

\[
a_n = \int_0^1 t^n dF_\omega(t) \quad (n = 0,1,2,\cdots).
\]
We are now in a position to prove the following theorem.

Theorem. If \(b = (b_0, b_1, b_2, \cdots) \) is any completely monotone sequence, there is an increasing function \(F_b(x) \) defined on the unit interval such that

\[
(12) \quad b_n = \int_0^1 t^n dF_b(t) \quad (n = 0, 1, 2, \cdots).
\]

Proof. Let \(b_* = \lim b_n \). The sequence \(a \) defined by \(a_n = (b_n - b_{n+1})/(b_0 - b_*) \) \((n = 0, 1, 2, \cdots)\) is of course completely monotone, but also satisfies (2) (unless \(b_0 = b_1 = \cdots = b_* \), but this case can easily be handled separately). Hence, from the remarks above, we have \(a_n = \int_0^1 t^n dF_a(t) \) \((n = 0, 1, 2, \cdots)\). Let \(F_b(x) = (b_0 - b_*)L(x) + b_*\delta(x) \) where \(L(x) = \int_0^x (1/(1 - t))dF_a(t) \) and \(\delta(x) = 1 \) if \(x = 1 \) and zero otherwise. Then

\[
\int_0^1 t^n dF_b(t) = (b_0 - b_*) \int_0^1 (t^n/(1 - t))dF_a(t) + b_* \int_0^1 t^n d\delta(t)
\]

\[
= (b_0 - b_*) \left(\int_0^1 (1/(1 - t))dF_a(t) - \sum_{k=0}^{n-1} \int_0^1 t^k dF_a(t) \right) + b_*
\]

\[
= b_* + (b_0 - b_*) \left(\int_0^1 (1/(1 - t))dF_a(t) - \sum_{k=0}^{n-1} (b_k - b_{k+1})/(b_0 - b_*) \right)
\]

\[
= b_* + b_n - b_0 + (b_0 - b_*) \int_0^1 (1/(1 - t))dF_a(t)
\]

\[
= b_* + b_n - b_0 + (b_0 - b_*) \int_0^1 dG_a(t)
\]

\[
= b_n.
\]

Hence (12) holds and this proves the theorem.

An inversion formula. We will now try to express the function \(G_a \) explicitly in terms of the sequence \(a \).

Lemma. There is a subset \(V \) of \(X \) which has measure one under any \(T \)-invariant probability measure and is such that if \(\omega \) is any point of \(V \),

\[
(13) \quad \lim_{n} (\omega_n / n) = \theta(\omega)/(1 - \theta(\omega)).
\]

Proof. We will represent the space \(X \) in yet another way as the space \(Y \) of all sequences of non-negative integers. We map a point \(\omega \) in \(X \) to the sequence \((\omega_1, \omega_2, -\omega_1, \omega_3, -\omega_2, \cdots)\) in \(Y \). If \(\mu_\theta \) is an ergodic measure on \(X \), we find that the corresponding measure \(v_\theta \) on \(Y \) is given by

\[
v_\theta(s_1, s_2, \cdots, s_k) = \prod_{i=1}^k (1 - \theta)\theta^{s_i}
\]
for any rectangle \(S = (s_1, s_2, \cdots, s_k) \) in \(Y \). Hence \(\nu_\theta \) is a product measure in \(Y \) which is invariant under the shift transformation \((s_1,s_2,s_3,\cdots) \to (s_2,s_3,s_4,\cdots)\). We apply the ergodic theorem, for the shift transformation, to the function \(f \) defined on \(Y \) by \(f(s_1,s_2,\cdots) = s_1 \). Then for almost every \((\nu_\theta)\) point \((s_1,s_2,\cdots)\) in \(Y \) we have

\[
\lim_{n} \frac{s_1 + s_2 + \cdots + s_n}{n} = \int_{Y} f(s) d\nu_\theta(s)
\]

\[
= \sum_{i=0}^{\infty} i(1 - \theta)^i = \theta/(1 - \theta)
\]

or, in \(X \),

\[
\lim_{n} \frac{\omega_n}{n} = \theta/(1 - \theta) \quad \mu_\theta \text{-a.e.}
\]

Clearly \(\theta(\omega) = \theta \) on a set \(V_\theta \) of \(\mu_\theta \) measure one. Hence the set \(V \) on which the two measurable functions \(\theta(\omega)/(1 - \theta(\omega)) \) and \(\lim (\omega_n/n) \) coincide is a set which has measure one for any \(T \)-invariant measure. This proves the lemma.

THEOREM. If \(a \) is any completely monotone sequence satisfying (2), \(G_a \) is given by

\[
G_a(x) = \lim_{n} \sum_{i=0}^{[nx/(1-x)]} \binom{n+i-1}{n-1} (\Delta^a)_i
\]

at every point \(x \) at which \(G_a \) is continuous.

Proof. First, from (13), we see that \(\theta(\omega) = \lim_n \omega_n/(n + \omega_n) \), so that

\[
\mu_a[\theta(\omega) < x] \leq \lim_n \mu_a[\omega_n/(n + \omega_n) < x] \\
\leq \mu_a[\theta(\omega) \leq x].
\]

We calculate the center member of this inequality:

\[
\mu_a[\omega_n/(n + \omega_n) < x] = \mu_a[\omega_n < nx/(1 - x)]
\]

\[
= \sum_{i=0}^{[nx/(1-x)]} \mu_a[\omega_n = i] = \sum_{i=0}^{[nx/(1-x)]} \binom{n+i-1}{n-1} (\Delta^a)_i
\]

where

\[
\binom{n+i-1}{n-1}
\]

is the number of rectangles of length \(n \) ending in \(i \). Now, passing to the limit, we get

\[
G_a(x-) \leq \sum_{i=0}^{[nx/(1-x)]} \binom{n+i-1}{n-1} (\Delta^a)_i \leq G_a(x),
\]

proving the theorem.
The transformations T_θ. We can obtain some information about the spectra of the measure-preserving transformations T_θ, although the results in this section are incomplete and probably not the best possible. Let us begin with the following theorem.

Theorem. If α is an eigenvalue of the transformation T_θ, then

$$\lim_{n} \alpha^{B(n)} = 1 \quad \mu_\theta-a.e.$$

where $B(n)$ is the binomial coefficient

$$\binom{n + \omega_n}{n}.$$

Proof. Let f be the eigenfunction having eigenvalue α. For each ω in X, let ω^n be the rectangle $(\omega_1, \omega_2, \ldots, \omega_n)$ of length n; let $R(\omega, i, j)$ be the rectangle $(\omega_n, \omega_{n+1}, \ldots, \omega_n, i, j)$ of length $n + 2$, and $S(\omega, i, j)$ be the rectangle $(\omega_1, \omega_2, \ldots, \omega_n, i, j)$ of length $n + 2$. It is known that

$$\lim_{n} \left(\frac{1}{n^\omega} \right) \int_{\omega^n} f d\mu_\theta = f(\omega) \quad a.e.$$

and hence

$$\lim_{n} \left| \frac{1}{n^\omega} \right| \int_{\omega^n} f d\mu_\theta = 1 \quad a.e.$$

Estimating the value of $\left| \int_{\omega^n} f d\mu_\theta \right|$, we find

$$\left| \int_{\omega^n} f d\mu_\theta \right| = \left| \sum_{j \geq 1 \geq \omega_n} \int_{S(\omega, i, j)} f d\mu_\theta \right| = \left| \sum_{j \geq 1 \geq \omega_n} \int_{R(\omega, i, j)} f d\mu_\theta \right|$$

$$\leq \sum_{j = \omega_n}^\infty \sum_{i = \omega_n}^\infty \int_{R(\omega, i, j)} f d\mu_\theta \leq \sum_{j = \omega_n}^\infty \theta^j (1 - \theta)^{n+2} G_n(j)$$

where $G_n(j)$ is a sum of powers of α, the powers being those powers of T which send the rectangle $R(\omega, \omega_n, j)$ into the rectangle $R(\omega, i, j)$ ($i = \omega_n, \omega_n + 1, \ldots, j$).

Let $S(n, r)$ be the number of rectangles of length n which end in r. Let $P(n, s) = S(n, 0) + S(n, 1) + \cdots + S(n, s)$. Note that the number $B(n)$, appearing in the statement of the theorem, is $P(n, \omega_n)$.

We leave to the reader the laborious task of showing that

$$(15) \quad \left| G_n(j) \right| = \left| 1 + \alpha^{P(n, \omega_n)} + \cdots + \alpha^{P(n, \omega_n) + \cdots + P(n, j-1)} \right|.$$

Notice that this implies $\left| G_n(j) \right| \leq j - \omega_n + 1$. Now we have

$$\left| \left(\frac{1}{\mu_\theta(n)} \right) \int_{\omega^n} f d\mu \right| \leq \left(\frac{1}{\theta^n (1 - \theta)^n} \right) \sum_{j = \omega_n}^\infty \theta^j (1 - \theta)^{n+2} \left| G_n(j) \right| \leq 1.$$
Both sides of this inequality approach 1 as \(n \) approaches infinity, so, for the middle,

\[
\lim_{n} (1 - \theta)^2 \sum_{j=0}^{\infty} \theta^{j} |G_{n}(\omega_{n} + j)| = 1 \quad \text{a.e.}
\]

But this can happen only if \(|G_{n}(\omega_{n} + j)| \) approaches \(j + 1 \) almost everywhere. Referring to (15), we see that \(\alpha^{R(n)} \) approaches 1, almost everywhere. This is what we wished to prove.

Theorem. If \(\theta < 1/2 \), the transformation \(T_{\theta} \) has no prime roots of unity as eigenvalues.

Proof. Suppose \(\alpha \) is a \(p \)th root of unity and is an eigenvalue. It is easy to see that the binomial coefficients

\[
\binom{p^{k} + i}{p^{k}} \quad (k = 1, 2, \cdots; i = 0, 1, \cdots, p^{k} - 1)
\]

are all equal to 1 (mod \(p \)). From the previous theorem we have

\[
\lim_{k} \alpha^{(p^{k} + \omega_{p^{k}})} = 1 \quad \text{a.e.}
\]

(16)

On the other hand, from (13), we have

\[
\lim_{k} \omega_{p^{k}} / p^{k} = \theta/(1 - \theta) < 1 \quad \text{a.e.}
\]

since \(\theta < 1/2 \). That is, eventually \(\omega_{p^{k}} < p^{k} \), so that eventually

\[
\binom{p^{k} + \omega_{p^{k}}}{p^{k}} = 1 \quad \text{(mod p)}.
\]

(17)

Hence (16) and (17) together form the contradiction which proves the theorem.

We obtain the immediate

Corollary. If \(\theta < 1/2 \), all powers of \(T_{\theta} \) are ergodic.

It is interesting to notice that the infinite product:

\[
f(\omega) = \alpha^{(1+\omega_{1}-1)} \alpha^{(2+\omega_{2}-1)} \cdots \alpha^{(k+\omega_{k}-1)}
\]

if it converges, is an eigenfunction with eigenvalue \(\alpha \). We have seen already that if \(\alpha \) is an eigenvalue, then

\[
\lim_{n} \alpha^{(n+\omega_{n})} = 1 \quad \text{a.e.}
\]

(18)
Integration of (18) over X yields
\[\lim_{n \to \infty} (1 - \theta)^n \sum_{j=0}^{\infty} \theta^j \binom{n + j - 1}{n - 1} \alpha^{n+j} = 1. \]

Also left open is the question of the conjugacy of T_θ and T_ϕ^{-1}, and the question mentioned earlier, of the conjugacy of T_θ and T_ϕ, $\theta \neq \phi$.

BIBLIOGRAPHY