NODAL NONCOMMUTATIVE JORDAN ALGEBRAS

BY

ROBERT H. OEHMKE

1. A finite-dimensional power-associative algebra \(\mathfrak{A} \) is said to be nodal [6] if every element of \(\mathfrak{A} \) can be written as \(\alpha 1 + z \) where \(\alpha \in \mathbb{F} \), 1 is the unity element of \(\mathfrak{A} \) and \(z \) is nilpotent and if the set of all nilpotent elements is not a subalgebra of \(\mathfrak{A} \).

In [3; 4], Kokoris has shown that every simple nodal noncommutative Jordan algebra of characteristic \(p \neq 2 \) has the form \(\mathfrak{A} = \mathfrak{A}^1 + \mathfrak{A} \) with \(\mathfrak{A}^1 = \mathbb{F}[x_1, \ldots, x_n] \) for some \(n \) where the generators are all nilpotent of index \(p \) and the multiplication is associative. If \(f \) and \(g \) are two elements of \(\mathfrak{A} \) then the multiplication table of \(\mathfrak{A} \) is given by

\[
f g = f \circ g + \frac{1}{2} \sum_{i,j} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j} \circ c_{ij},
\]

where the circle product is the product in \(\mathfrak{A}^1 \) and

\[
c_{ij} = x_i x_j - x_j x_i.
\]

In [7] Schäfer considers nodal noncommutative Jordan algebras defined by a skew-symmetric bilinear form (i.e., \(c_{ij} \in \mathbb{F} \)) and those with two generators. All of these algebras are Lie-admissible (i.e., \(\mathfrak{A}^- \) is a Lie algebra). Schäfer obtained the derivation algebras of these algebras defined by a skew-symmetric bilinear form.

Here, we examine all simple nodal noncommutative Jordan algebras that are Lie-admissible over a field \(\mathbb{F} \) of characteristic \(p \neq 2 \). First a set of generators is obtained having properties suitable for further study. This set of generators is then used to find the algebras \(D(\mathfrak{A}) \) of derivatives of \(\mathfrak{A} \) and the algebras \(\text{adj} \mathfrak{A}^- \) and \((\text{adj} \mathfrak{A}^-)' \). Schäfer has shown that all of the simple Lie algebras defined by Block [1] can be realized as \((\text{adj} \mathfrak{A}^-)' \) for some \(\mathfrak{A} \) that is simple, nodal noncommutative Jordan and Lie-admissible. Hence we have obtained a somewhat different formulation of these algebras. The question remains whether all of these algebras, \((\text{adj} \mathfrak{A}^-)' \), are in the class defined by Block. It is our intention to investigate this question in a subsequent paper.

2. We define the mapping \(D_y = D(y) \) by

\[
x D_y = xy - yx.
\]

Received by the editors April 19, 1963.
Then $D_y = R_y - L_y$ where R_y and L_y are the right and left multiplications by y on \mathfrak{A}.

A derivation of an algebra \mathfrak{B} is a linear transformation T on \mathfrak{B} into \mathfrak{B} such that for $x, y \in \mathfrak{B}$

$$(xy)T = (xT)y + x(yT).$$

Since \mathfrak{A}^{\ominus} is a Lie algebra D_y is the right multiplication by y of \mathfrak{A}^{\ominus} and is a derivation of \mathfrak{A}^{\ominus}. By expanding

$$2(x \circ y)D_z - 2(xD_z) \circ y - 2x \circ (yD_z)$$

in terms of the multiplication of \mathfrak{A} and using the flexible law

$$(xy)z + (zy)x = x(yz) + z(yx)$$

we see that D_z is also a derivation of \mathfrak{A}^{+} and hence of \mathfrak{A}.

It is well known [2, p. 108] that any set of n elements of \mathfrak{A} whose cosets form a basis of the n-dimensional space $\mathfrak{A} - \mathfrak{A} \circ \mathfrak{A}$ can serve as a set of generators of \mathfrak{A}^{+}. This result shall be our chief tool in the proof of the following theorem.

Theorem 1. Let \mathfrak{A} be a simple, Lie-admissible, nodal noncommutative Jordan algebra over a base field \mathfrak{F} of characteristic $p \neq 2$. If \mathfrak{A}^{+} has an even number of generators then a set of generators x_1, \ldots, x_{2r} can be chosen for \mathfrak{A}^{+} so that

$$x_iD(x_{i+r}) = 1 + \alpha_i x_{i+r}^{p-1} \circ x_{i+r-1}^{p-1}, \quad i = 1, \ldots, r,$$

$$x_iD(x_j) = 0, \quad j \neq i + r,$$

with $\alpha_i \in \mathfrak{F}$. If \mathfrak{A}^{+} has an odd number of generators then a set of generators x_1, \ldots, x_{2r+1} can be chosen for \mathfrak{A}^{+} so that (1) is satisfied and

$$x_{2r+1}D(x_j) = 0, \quad j = 1, \ldots, 2r - 2,$$

$$x_{2r+1}D(x_{2r}) = x_{2r}^{p-1} \circ (1 + \beta x_{2r+1}^{p-1}),$$

$$x_{2r+1}D(x_{2r-1}) = x_{2r-1}^{p-1} \circ (1 + \beta x_{2r+1}^{p-1}),$$

with α and β in \mathfrak{F}.

Proof. Since \mathfrak{A} is simple \mathfrak{A} can not be an ideal of \mathfrak{A}^{\ominus}. For if \mathfrak{A} is an ideal of \mathfrak{A}^{\ominus} then since it is an ideal of \mathfrak{A}^{+} it would be closed under both the operations $R_y - L_y$ and $R_y + L_y$ for $y \in \mathfrak{A}$. Therefore it would be also an ideal of \mathfrak{A}. Hence there must be a pair of generators x and y such that yD_x is nonsingular. Since y can be replaced by αy for any α in \mathfrak{F} we assume

$$yD_x = 1 + m \circ y^k = b^{-1}.$$

We also assume y has been chosen so that k is a maximum. If $k < p - 1$ then letting $q = (y - 1/(k + 1))y^{k+1} \circ m \circ b$ we have
\[qD_x = 1 - \frac{1}{k + 1} y^{k+1} \circ (m \circ b)D_x \]
\[= 1 + q^{k+1} \circ m' \]

which contradicts the choice of \(k \). Hence we can assume in (3) that \(k = p - 1 \).

We now write (3) as

\[yD_x = 1 + y^{p-1} \circ x^t \circ m' = b^{-1} \]

and assume that \(y \) and \(x \) have been chosen so that \(t \) is a maximum. If \(t < p - 1 \) then, as above, we can replace \(x \) by \(x - 1/(t + 1) \circ x^{t+1} \circ m' \circ y^{p-1} \circ b \) to obtain a contradiction to our choice of \(t \). Hence we can assume \(x \) and \(y \) have been chosen so that

\[yD_x = 1 + m_x \circ y^{p-1} \circ x^{p-1}. \]

If \(z \) is a third generator, in the same way that we altered the generator \(y \), we can add an element \(q \) of \(y \circ \mathfrak{U} \) to \(z \) to obtain the property

\[(z + q)D_x \in y^{p-1} \circ \mathfrak{U}. \]

Hence we assume that all generators \(z \) different from \(x \) and \(y \) have been chosen so that

\[zD_x = y^{p-1} \circ m_z. \]

Since for any \(q \) in \(\mathfrak{U} \) we have \(D_q \) a derivation of both \(\mathfrak{U} \) and \(\mathfrak{U}^{-} \) then

\[zD_yD_x = zD_xD_y - yD_xD_z. \]

If (4) and (5) are substituted in (6) we have

\[zD_yD_x = y^{p-1} \circ m_yD_y + y^{p-2} \circ x^{p-1} \circ m_y \circ yD_z \]
\[- y^{p-1} \circ x^{p-1} \circ m_yD_z. \]

But the right-hand side of (7) is in \(y^{p-2} \circ \mathfrak{U} \); so also is the left-hand side. From (4) and (5) the only possible way for this to happen is to have

\[zD_y = n_0 + y^{p-1} \circ n_1 \]

in which \(n_i \) is independent of \(y \). (i.e., \(n_i \) is a polynomial in which \(y \) does not appear.) In (7) this implies

\[n_0D_x - y^{p-2} \circ n_1 = y^{p-1} \circ m_yD_y - y^{p-2} \circ x^{p-1} \circ m_y \circ n_0 \]
\[- y^{p-1} \circ x^{p-1} \circ m_yD_z \]

and

\[n_1 = x^{p-1} \circ m_y \circ n_0. \]
Write \(n_0 = x^k \circ t \). If \(k < p - 1 \) we can replace the generator \(z \) by the generator \(z + 1/(k + 1) \circ x^{k+1} \circ t = z' \) to get

\[
z' D_y = n_0 + y^{p-1} \circ m_y \circ n_0 \circ x^{p-1} + x^k \circ t \circ x D_y + \frac{1}{k + 1} x^{k+1} \circ t D_y
\]

\[
= y^{p-1} \circ x^{p-1} \circ m_y \circ n_0 + \frac{1}{k + 1} x^{k+1} \circ t D_y
\]

\[
= n'_0 + y^{p-1} \circ x^{k+1} \circ m_y \circ n'_1;
\]

in which \(n'_1 \) is again independent of \(y \). Note that if (5) holds and \(z \) is replaced by a generator \(z + q \) in which \(q \) is independent of \(y \) then (5) will be retained.

Again arguing on the maximum value of \(k \) that can be obtained in the expression \(n_0 = x^k \circ t \) we can conclude that \(k = p - 1, n_1 = 0 \) and

\[
z D_y = x^{p-1} \circ n_z,
\]

\[
z D_x = y^{p-1} \circ m_z
\]

in which \(n_z \) is independent of \(y \).

Identity (7) can now be reduced to

\[
(10) \quad x^{p-1} \circ n_z D_x = y^{p-1} \circ m_z D_y - y^{p-1} \circ x^{p-1} \circ m_y D_z.
\]

For a particular choice of a set of generators including \(x \) and \(y \) satisfying (4) assume there are two distinct generators \(w \) and \(z \) (both satisfying (9)). Write

\[
(11) \quad m_z = \sum x^i \circ m_i, \quad m_0 = \sum w^i \circ n_i.
\]

(When obvious, we shall omit index and range of the summation.) Then

\[
m_z D_y = - \sum ix^{i-1} \circ m_i + \sum x^i \circ m_i D_y - m_0 \circ y^{p-1} \circ x^{p-1}.
\]

But from (10) \(y^{p-1} \circ m_z D_y \in x \circ \mathfrak{A} \). Therefore

\[
(12) \quad - y^{p-1} \circ m_1 + y^{p-1} \circ m_0 D_y \in x \circ \mathfrak{A},
\]

\[
- y^{p-1} \circ m_1 + y^{p-1} \circ \sum i w^{i-1} \circ n_i \circ w D_y + \sum w^i \circ n_i D_y \in x \circ \mathfrak{A}.
\]

If \(w \) is replaced as a generator by \(w' = w - x \) then (9) still holds for \(z \) and hence so do the corresponding relationships (12). Note that if \(P(w) \) is a polynomial in \(w \) then \(P(w) - P(w + x) \in x \circ \mathfrak{A} \) and \(w D_y - (w + x) D_y = 1 \in x \circ \mathfrak{A} \). If we write \(q' \) for \(q = q(w) \) with \(w \) replaced by \(w + x \) then \(w' D_z = y^{p-1} \circ m'_z; \ m'_z = \sum x^i \circ m'_i; \ m'_0 = \sum w^i \circ n'_i \) and from (11) we have

\[
0 \equiv - y^{p-1} \circ m'_1 + y^{p-1} \circ \sum i w^{i-1} \circ n'_i \circ w' D_y + \sum w^i \circ n'_i D_y
\]

\[
\equiv - y^{p-1} \circ m_1 + y^{p-1} \circ \sum i w^{i-1} \circ n_i \circ w D_y + \sum w^i \circ n_i D_y
\]

\[
\equiv - y^{p-1} \circ m_1 + y^{p-1} \circ \sum i w^{i-1} \circ n_i \circ (w D_y - 1) + \sum w^i \circ n_i D_y
\]

modulo \(x \circ \mathfrak{A} \).
But this implies $y^{p-1} \circ \sum_{i \leq 1} \circ m_i \in x \circ \mathbb{A}$. Therefore $y^{p-1} \circ n_i \in x \circ \mathbb{A}$ for $i > 0$.

Now assume that in (11) we have chosen the m_i to be independent of x. Then since m_z is independent of y and m_0 is independent of x we have $n_i = 0$ for $i > 0$. Hence m_0 is independent of w. Since w was arbitrary we must have m_0 a polynomial in the single generator z. But then $y^{p-1} \circ m_0 D_y \in x \circ \mathbb{A}$ by (9) and $y^{p-1} \circ m_1 \in x \circ \mathbb{A}$ by (12). However m_1 is independent of x and y. Hence $m_1 = 0$.

Once again looking at (12) we have

$$y^{p-1} \circ m_z D_x \equiv -y^{p-1} \circ \sum x^{i-1} \circ m_i + y^{p-1} \circ \sum x^i \circ m_i D_y \equiv 0$$

modulo $x^{p-1} \circ \mathbb{A}$. With $m_0 D_y \in x^{p-1} \circ \mathbb{A}$ and $m_1 = 0$ we see that $m_2 = \ldots = m_{p-1} = 0$ and $m_z = m_0$ is a polynomial in z with coefficients in \mathbb{F}. Similarly we obtain n_z as a polynomial in z with coefficients in \mathbb{F}. Therefore if the number of generators is greater than or equal to 4 and they have been picked so that (4) and (9) hold then m_z and n_z in (9) are polynomials in the single generator z.

However if z and w are two generators distinct from x and y then z can be replaced as a generator by $z + w$. Indentity (9) still holds, i.e.,

$$(z + w) D_x = y^{p-1} \circ m_{z+w},$$

$$(z + w) D_y = x^{p-1} \circ n_{z+w}$$

in which m_{z+w} and n_{z+w} are polynomials in the single generator $(z + w)$. But $m_{z+w} = m_z + m_w$ and $n_{z+w} = n_z + n_w$. For these sums to be polynomials in $(z + w)$, m_z and n_z must be of degree at most 1. If z is replaced by $z + z^2$ then (9) still holds for the generator $(z + z^2)$. In particular $m_z + 2z \circ m_z$ is of degree at most 1 in $(z + z^2)$. Write m_z as $\alpha + \beta z$ and $m_z + 2m_z \circ m_z$ as $\gamma + \delta(z + z^2)$. Then $\beta = 2\alpha$. Since z was arbitrary we must also have $\delta = 2\gamma$. But the same relationships that gave us $\beta = 2\alpha$ also give us $\delta = 2\gamma$, i.e., $\delta = \gamma = \alpha = \beta = 0$. Hence $m_z = 0$ and in the same manner $n_z = 0$.

We still assume we have at least two generators z and w distinct from x and y. We also assume that they have been chosen so that

$$(13) \quad zD_z = zD_x = wD_x = wD_y = 0.$$ \textbf{We must have} $$wD_z D_x = wD_x D_z - zD_x D_w$$

and therefore $(wD_z) D_x = 0$. This implies that wD_z is independent of y. Similarly $(wD_z) D_y = 0$ and wD_z is independent of x. Then if we assume that all the generators distinct from x and y have been chosen so that their product in \mathbb{A}^- by either x or y is 0, we can assume that the polynomials over \mathbb{F} in these generators is an ideal \mathcal{I} of \mathbb{A}^-. But then $\mathcal{I} \circ \mathbb{A}$ is an ideal in both \mathbb{A}^- and \mathbb{A}^+ and hence in \mathbb{A}. Therefore \mathcal{I} must contain a nonsingular element. This means that there are two generators w and z, distinct from x and y, such that wD_z is nonsingular.
At this point we reconsider the polynomial m_y obtained in (4). If the generators x, y, z, w have been chosen so that (4) and (13) hold and z and w are such that wD_z is nonsingular then (7) reduces to

$$y^{p-1} \circ x^{p-1} \circ m_y D_z = 0.$$

Therefore $m_y D_z$ is 0 since it is independent of both x and y. But this implies that m_y is independent of w and by symmetry m_y is independent of z. If t is a fifth generator then either tD_z or $(w + t)D_z$ is nonsingular. In either case we see that m_y is also independent of t. Hence $m_y \in \mathfrak{F}$.

We can now proceed in \mathfrak{S} (defined above) with the same argument as above to obtain the result of the theorem for the even-dimensional case.

In the odd dimensional case we can proceed with the above argument until we are presented with an \mathfrak{S} which is the set of polynomials over \mathfrak{F} in three generators, say x, y and z. Again by the previous arguments we can assume that x, y and z have been chosen so that

$$yD_x = 1 + y^{p-1} \circ x^{p-1} \circ m_y,$$

$$zD_x = y^{p-1} \circ m_z,$$

$$zD_y = x^{p-1} \circ n_z.$$

Consider (7). We have

$$x^{p-1} \circ n_z D_x = y^{p-1} \circ m_z D_y - y^{p-1} \circ x^{p-1} \circ m_y D_z.$$

Since m_y is a polynomial in x, y and z then $y^{p-1} \circ x^{p-1} \circ m_y D_z = 0$. Also since m_z is independent of y and by (9) $m_z D_y$ is independent of y we must have $m_z D_y \in x^{p-1} \circ \mathfrak{F}$. This implies that m_z is independent of x. Hence $y^{p-1} \circ m_z D_y = \partial m_z / \partial z \circ x^{p-1} \circ y^{p-1}$ and $x^{p-1} \circ m_z D_x = \partial n_z / \partial z \circ x^{p-1} \circ y^{p-1}$. From (14) we have

$$\frac{\partial n_z}{\partial z} = \frac{\partial m_z}{\partial z}.$$

If both n_z and m_z are singular then zD_x and zD_y are in $z \circ \mathfrak{F}$. Hence $z \circ \mathfrak{F}$ is an ideal of \mathfrak{F}^- and \mathfrak{F}^+. Since this denies the simplicity of \mathfrak{F} we must have either m_z or n_z nonsingular. Assume $m_z = 1 + q$ in which $q \in \mathfrak{F}$. Then if l is a polynomial in z over \mathfrak{F} we have

$$(z + l)D_x = y^{p-1} \circ (1 + q) + y^{p-1} \circ \frac{\partial l}{\partial z} \circ (1 + q).$$

Clearly, l can be chosen so that $\partial l / \partial z \circ (1 + q) \equiv w$ modulo $z^{p-1} \circ \mathfrak{F}$. Hence we can assume

$$zD_x = y^{p-1} + \beta y^{p-1} \circ z^{p-1},$$

where β is a polynomial in z. If β is a polynomial in z of degree less than $p-1$ then zD_x is in $z \circ \mathfrak{F}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
in which $\beta \in \mathfrak{g}$. Now since m_z is nonsingular the solutions of (15) are of the form $n_z = \alpha m_z$. Hence

$$zD_x = \alpha x^{p-1} \circ (1 + \beta z^{p-1}).$$

Again, let l be a polynomial in z over \mathfrak{g}. Then

$$(y + x^{p-1} \circ l)D_x = 1 + y^{p-1} \circ x^{p-1} \circ \left[m_x + \frac{\delta l}{\delta z} \circ (1 + \beta z^{p-1}) \right].$$

Write $m_x = y + z \circ t$ and $l = \delta z + z^2 \circ l'$ in which

$$\frac{\partial (z^2 \circ l')}{\partial z} + z \circ t$$

is a multiple of z^{p-1}. Then

$$\frac{\partial (z^2 \circ l')}{\partial z} \circ (1 + \beta z^{p-1}) + z \circ t$$

is also a multiple of z^{p-1}. Now choose δ so that

$$\delta(1 + \beta_z^{-1}) + \frac{\partial (z^2 \circ l')}{\partial z} \circ (1 + \beta z^{p-1}) + z \circ t$$

is a constant. We now have

$$(y + x^{p-1} \circ l)D_x = 1 + y \circ x^{p-1} \circ y^{p-1}.$$ \hspace{1cm} \text{(18)}$$

Since $(y + x^{p-1} \circ l)^{p-1} \circ x^{p-1} = y^{p-1} \circ x^{p-1}$ we can assume the generator y can be chosen so that

$$yD_x = 1 + y \circ x^{p-1} \circ y^{p-1}.$$ \hspace{1cm} \text{(19)}$$

We can now repeat the construction of the z in (9) to obtain

$$zD_x = y^{p-1} \circ m_z,$$

$$zD_y = x^{p-1} \circ n_z.$$ \hspace{1cm} \text{(20)}$$

From these we can obtain (16) and (17). Hence we have concluded the proof of the theorem.

3. Let \mathfrak{A} and \mathfrak{A}^\ast be two simple nodal algebras that are equal as vector spaces and have the same $+$ algebras. Let there be an even number of generators x_1, \ldots, x_{2r} with the multiplication in \mathfrak{A} given by the $c_{ij} = x_i D(x_j)$ obtained in Theorem 1 and the multiplication in \mathfrak{A}^\ast given by

$$c_{i+i+r} = 2,$$

$$c'_{ij} = 0$$

for $i = 1, \ldots, r$ and $j \neq i + r$. The algebra \mathfrak{A}^\ast then falls into the class of simple
nodal algebras defined by a skew-symmetric bilinear form and studied by Schäfer [7].

Every derivation of \mathcal{A} must be a derivation of \mathcal{A}^*. The derivations of \mathcal{A}^* have been given by Jacobson [2, p. 107] as

\begin{equation}
\sum_{k=1}^{2r} \frac{\partial f}{\partial x_k} \circ a_k.
\end{equation}

We shall denote this derivation by (a_1, \ldots, a_{2r}). Assume (a_1, \ldots, a_{2r}) is a derivation of \mathcal{A} and consider the possibility that (b_1, \ldots, b_{2r}) is a derivation of \mathcal{A}^* in which

\begin{equation}
b_i = c_{is}^{-1} \circ c_{is} \circ a_i
\end{equation}

and s is $i + r$ if $i \leq r$ and is $i - r$ if $i > r$. In the same way we choose t so $t = j + r$ or $j - r$ and $t \leq 2r$.

Consider the expression

\begin{equation}
\sum_{k=1}^{2r} \left(\frac{\partial c_{ij}}{\partial x_k} \circ b_k + \frac{\partial b_i}{\partial x_k} \circ c_{ik} + \frac{\partial b_j}{\partial x_k} \circ c_{ij} \right)
\end{equation}

obtained from Schäfer's criteria [7, p. 312] that (b_1, \ldots, b_{2r}) be a derivative of \mathcal{A}^*. We want to show that for all i and j (20) is 0. By the choice of the c_{ij}'s (20) can be reduced to

\begin{equation}
\frac{\partial b_i}{\partial x_t} \circ c_{is} + \frac{\partial b_j}{\partial x_s} \circ c_{j_i}
\end{equation}

and by substituting the expressions (19) we have

\begin{align*}
c_{jt} \circ c_{is} \circ & \left(\frac{\partial a_i}{\partial x_t} \circ c_{is}^{-1} - \frac{\partial a_j}{\partial x_s} \circ c_{jt}^{-1} \right) \\
& + c_{jt} \circ c_{is} \circ \left(\frac{\partial c_{is}^{-1}}{\partial x_t} \circ a_i - \frac{\partial c_{jt}^{-1}}{\partial x_s} \circ a_j \right).
\end{align*}

For our purposes we can drop the factor $c_{jt} \circ c_{is}$, use the fact that if $q \in \mathbb{N}$ then $(1 + q^{p-1})^{-1} = 1 - q^{p-1}$, and

\begin{equation}
c_{is} \circ \frac{\partial c_{jt}}{\partial x_s} = c_{is} \circ c_{jt} \circ \frac{\partial c_{is}}{\partial x_t} = 0
\end{equation}

to further reduce (20) to

\begin{equation}
\frac{\partial a_i}{\partial x_t} \circ c_{jt} - \frac{\partial a_j}{\partial x_s} \circ c_{is} + \frac{\partial c_{jt}}{\partial x_s} \circ a_j - \frac{\partial c_{is}}{\partial x_t} \circ a_i.
\end{equation}

But the criteria that must be satisfied for (a_1, \ldots, a_{2r}) to be a derivation of \mathcal{A} is that (21) be zero. Hence (b_1, \ldots, b_{2r}) is a derivation of \mathcal{A}^*. From identities (14) of Schäfer [7] we can now conclude that there is a g such that
\[b_i = \left(\frac{\partial g}{\partial x_i} + \sigma_i \circ x_i^{p-1} \right) \circ c_i \]

in which \(\sigma_i \) is in \(\mathfrak{X} \). Therefore

\[a_i = \left(\frac{\partial g}{\partial x_i} + \sigma_i \circ x_i^{p-1} \right) \circ c_i. \]

Schafer has already proved [7, Theorem 8] that if the \(a \)'s are defined as in (22) then they define a derivation.

We summarize as follows.

Theorem 2. If \(\mathfrak{A} \) is a simple, nodal, Lie-admissible noncommutative Jordan algebra of characteristic \(p \neq 2 \) such that \(\mathfrak{A}^+ \) has an even number \(n \) of generators then the derivation algebra \(\mathfrak{D}(\mathfrak{A}) \) of \(\mathfrak{A} \) is the set of all mappings

\[f \mapsto \sum_1^n \frac{\partial f}{\partial x_i} \circ a_i \]

in which the \(a_i \) are defined as in (22). The dimension of \(\mathfrak{D}(\mathfrak{A}) \) is \(p^n + n - 1 \).

We now investigate the algebras \text{adj} \(\mathfrak{A}^- \), \(\text{adj} \mathfrak{A}^- \)' and \(\text{adj} \mathfrak{A}^- \)''.

Using Schafer's result [7, Theorem 7] we have \(\mathfrak{A}^- / \mathfrak{Y} \cong \text{adj} \mathfrak{A}^- \) is of dimension \(p^{2r} - 1 \).

Since \(D_n D_m - D_m D_n = D(n D_m) \) we can consider \(\text{adj} \mathfrak{A}^- \)' as the set of all \(D_s, x \in \mathfrak{A}^- \) such that there are \(y \) and \(z \) in \(\mathfrak{A}^- \) with \(x \equiv y D_z \) modulo \(\mathfrak{Y} \). Also \(x_i^2 D(x_{i+r}) = 2x_i \) implies \(D(x_i) \in \text{adj} \mathfrak{A}^- \)'.

Before examining the dimension of \(\text{adj} \mathfrak{A}^- \)' we consider a slightly more general situation.

Let \(\mathfrak{S} \) be an ideal of \(\mathfrak{A}^- \) containing all of the generators \(x_1, \cdots, x_{2r} \). Let \(m \) be a monomial of \(\mathfrak{A}^- \) that is not in \(\mathfrak{Y} \), and in which the exponent of \(x_1 \) is \(i \) and \(0 \leq i < p - 1 \). Write \(m = x_1^i \circ n \). Then

\[D(x_{i+r}) = \left(\frac{1}{i+1} x_1^{i+1} \circ n \right) D(x_{i+r}) = x_1^i \circ n \circ c_{11+r}. \]

If \(i > 0 \), \(c_{11+r} \in \mathfrak{S} \), or \(x_{i+r} \) appears in \(m \) with nonzero exponent then \(x_1^i \circ n \circ c_{11+r} = x_1^i \circ n = m \in \mathfrak{S} \). Arguing on the arbitrariness of the choice of \(x_1 \) we see that all terms of degree greater than 0 are in \(\mathfrak{S} \) except possibly those in which:

1. every generator appears to either the 0 or \(p - 1 \) power,
2. \(x_1 \) has exponent \(p - 1 \) if and only if \(x_{i+r} \) has exponent \(p - 1 \) for \(i = 1, \cdots, r \) and
3. \(x_i \) and \(x_{i+r} \) have exponent \(p - 1 \) if \(c_{ii+r} \in \mathfrak{S} \).

However, assume such a term is \(m \), and assume \(x_1 \) has exponent 0 in \(m \) and \(c_{11+r} \notin \mathfrak{S} \). Then from (23) we see that \(m \equiv - x_1 m \circ x_1^{p-1} \circ x_1^{i+r} \) modulo \(\mathfrak{S} \).
This leaves us with at most two residue classes modulo \mathcal{I}; the class containing 1 and the class containing $x_i^{p-1} \circ x_i^{p-1} \circ \cdots \circ x_i^{p-1} \circ x_i^{p-1}$ in which $\mathcal{G} = \{i_1, \ldots, i_r\}$ is the set of all $i \leq r$ such that $c_{ii+r} \in \mathbb{F}_p$. If \mathcal{G} is empty then since

$$x_i D(x_{i+r}) = 1 + x_i x_i^{p-1} \circ x_i^{p-1}$$

and $x_i \neq 0$ there is at most one residue class, that one containing 1.

We now let \mathcal{I} be the ideal in \mathcal{U}^- such that $\mathcal{I} \cong (\text{adj } \mathcal{U}^-)'$. If $\mathcal{G} = \emptyset$ by the above result we have $\mathcal{I} = \mathcal{U}^-$ and $(\text{adj } \mathcal{U}^-)' = \text{adj } \mathcal{U}$.

In case $\mathcal{G} \neq \emptyset$ we first note that we have shown that \mathcal{I} contains all monomials and binomials of the form

$$(24) \quad n \circ c_{ii+r},$$

$i = 1, \ldots, r$, and n is a monomial without the factor $x_i^{p-1} \circ x_i^{p-1}$. To show that these are the only terms in \mathcal{I} we consider two monomials $n = x \circ x_i \circ x_i^{p-1}$ and $m = y \circ x_i \circ x_i^{p-1}$ in which x and y are independent of x_i and x_{i+r}. Every element of \mathcal{I} is a sum of terms of the form nDm and every nDm is a sum of terms of the form

$$\begin{align*}
(x_i^k \circ x_i^{p-1})D(x_i^k \circ x_i^{p-1}) \circ y \circ x \\
y \circ x \circ x_i^{u+k-1} \circ x_i^{u+j-1} \circ (v-k-uj) \circ c_{ii+r}.
\end{align*}$$

If $u+k-1 = v+j-1 = p-1$ then $v-k-uj = 0$. Hence every element of \mathcal{I} is a sum of terms of the form (24).

Now let q be the product of all x_i^{p-1} such that $i \in \mathcal{G}$. If q is in \mathcal{I} then it must be a sum of terms of the form (24). In fact we must have

$$q = \sum q \circ n_i \circ c_{ii+r},$$

in which $i \notin \mathcal{G}$, n_i is a polynomial independent of any of the generators in q. But this is a polynomial identity that holds in any scalar extension of \mathcal{G}. Hence we can substitute field elements δ_i, δ_{ii+r} of some scalar extension \mathcal{R} of \mathcal{G} for x_i and $x_{i+r}, i \notin \mathcal{G}$, so that $1 + \alpha_i \delta_i^{p-1} \circ \delta_{ii+r}^{p-1} = 0$. But then the polynomial identity $q = 0$ holds over \mathcal{R}. Hence $q \notin \mathcal{I}$.

We now show that $(\text{adj } \mathcal{U}^-)'$ is simple. Let \mathcal{I} be an ideal of $(\text{adj } \mathcal{U}^-)'$. To simplify the notation we will again actually work with an ideal in \mathcal{U}^- and assume everything is reduced modulo \mathcal{G}^1.

Let \mathcal{L} be the set of all polynomials in \mathcal{I} with a minimal number of terms in them. If the generator x_i appears in any of these polynomials in \mathcal{L} choose one such polynomial m in which x_i appears to the minimal positive degree. Consider $mD(x_i^{2})$ which is in \mathcal{I} and has fewer terms than m unless x_i appears with positive exponent in every term of m. Also, if any term is of degree greater than 1 in x_i then we have a contradiction to our choice of m to be of minimal degree in x_i. Hence we can assume $m = x_i \circ n$ in which n is independent of x_i. By choosing n
to be of minimal positive degree in some second generator and avoiding the use of derivations D_y for which x_{1+r} appear in y we can repeat the above argument finally obtaining a monomial m in \mathcal{S} which is the product of distinct generators. If both x_i and x_{i+r} are in m we can replace m by mD_{x_i}. Hence we can assume in addition that the subscripts i of the generator in m satisfy $i \leq r$. Write

$$m = x_{i_1} \circ x_{i_2} \circ \cdots \circ x_{i_t}$$

and apply successively the derivations

$$D(x_{i_1+r}), D(x_{i_2+r} \circ c_{i_1+i_2+r}), \ldots, D(x_{i_t+r} \circ c_{i_1+i_2+\cdots+i_t+r})$$

obtaining $x_{i_1+r} \in \mathcal{S}$ and $x_{i_2+r} \circ D(x_{i_1+r}) = 2x_i \in \mathcal{S}$. Hence we can conclude that any generator that appears in a monomial of \mathcal{S} is in \mathcal{S}. If x_i is one such generator then for $i \neq j$, $x_iD(x_{i+r} \circ x_j) = 2x_{i+r} \circ x_j$ is in \mathcal{S} and $x_j \in \mathcal{S}$. Therefore \mathcal{S} contains all generators. By the results above \mathcal{S} must be all of (adj \mathcal{S})$'$ and (adj \mathcal{S})$'$ is simple. We summarize in the following theorem.

Theorem 3. If \mathcal{S} is a simple, Lie-admissible nodal noncommutative Jordan algebra of characteristic $p \neq 2$ with $2r$ generators then (adj \mathcal{S})$'$ is a simple Lie algebra of dimension either $p^{2r} - 1$ or $p^{2r} - 2$ in the cases $\mathbb{S} = \emptyset$ or $\mathbb{S} \neq \emptyset$ respectively.

4. Let \mathcal{S} and \mathcal{S}^* be two nodal algebras that are equal as vector spaces and have the same + algebra. Let there be an odd number $n = 2r + 1$, of generators x_1, \ldots, x_n with the multiplication in \mathcal{S} given by $c_{i+r} = 2$ for $i = 1, \ldots, r$ and all other $c_{ij} = 0$.

Let (a_1, \ldots, a_n) be a derivation of \mathcal{S}. Just as in the previous section we can show $(b_1, \ldots, b_{2r-2}, 0, 0, 0)$ is a derivation of \mathcal{S}^* if

$$b_i = c_{i+r}^{-1} \circ c_{i+r} \circ a_i$$

for $i = 1, \ldots, r - 2$. Therefore we must have

$$a_i = \left(\frac{\partial g}{\partial x_i} + \sigma_i \circ x_{i+r}^{-1} \right) \circ c_{i+r}$$

for $i = 1, \ldots, r - 1$. Here though, σ_i can apparently be any polynomial in $\mathbb{S}[x_{2r-1}, x_{2r}, x_{2r+1}]$. To obtain further restrictions on the σ_i we examine derivations of the form

$$(\sigma_1 \circ x_{1+r}^{-1} \circ c_{11+r}, \ldots, \sigma_{2r-2} \circ x_{r+1}^{-1} \circ c_{2r-2+r-2}, a_{2r-1}, a_{2r}, a_{2r+1}).$$

We now use identity (5) of Schäfer [7] with $i \leq r - 2$ and $j \geq 2r - 1$ to obtain

$$(26) \sum_{2r-1}^{n} \frac{\partial \sigma_i}{\partial x_k} \circ x_{i+r}^{-1} \circ c_{jk} + \frac{\partial a_j}{\partial x_{i+r}} \circ c_{i+r+1} = 0.$$
must have \(\frac{\partial a_j}{\partial x_{i+r}} = 0 \) and \(a_j \) independent of \(x_{i+r} \). Interchanging \(i \) and \(i + r \) in (26) we see \(a_j \) is also independent of \(x_i \). Hence \(a_j \) is a polynomial in \(\mathcal{K}[x_{2r-1}, x_{2r}, x_{2r+1}] \).

We now select \(j \) in (26) to be \(2r \). Then
\[
\frac{\partial \sigma_i}{\partial x_{2r-1}} x_{i+r}^{2r-1} c_{2r,2r-1} + \frac{\partial \sigma_i}{\partial x_{2r+1}} o x_{i+r}^{2r} o c_{2r,2r+1} = 0.
\]
Since \(x_{2r}^{2r-1} \) is a factor of \(c_{2r,2r+1} \) and \(\sigma_i \) is independent of \(x_{i+r} \) we must have
\[
\frac{\partial \sigma_i}{\partial x_{2r+1}} o c_{2r,2r+1} = 0,
\]
(27)
\[
\frac{\partial \sigma_i}{\partial x_{2r-1}} = 0.
\]
Hence \(\sigma_i \) is independent of \(x_{2r-1} \). In the same way we see that \(\sigma_i \) is independent of \(x_{2r} \). Now by the first relationship in (27) we have \(\sigma_i \) independent of \(x_{2r+1} \) and \(\sigma_i \in \mathcal{K} \).

We can now confine our attention to finding the derivations of an algebra \(\mathfrak{A} \) with three generators \(x, y, z \) in which multiplication is defined by
\[
yD_x = 1 + yx \circ y^{-1} = d_{12},
\]
\[
zD_x = y^{-1} \circ (1 + \beta z^{-1}) = d_{13},
\]
\[
zD_y = \alpha x \circ (1 + \beta z^{-1}) = d_{23}.
\]
Let \((a_1, a_2, a_3) \) be a derivation of \(\mathfrak{A} \). Since there are derivations of the form
\[
\frac{\partial g}{\partial x} o d_{11} + \frac{\partial g}{\partial y} o d_{12} + \frac{\partial g}{\partial z} o d_{13}
\]
[7, Theorem 8] and \(a_1 \circ d_{12}^{-1} = \frac{\partial g}{\partial y} \) can be solved to within a multiple \(y^{-1} \) \[7, Lemma 1\], we can subtract off the derivation induced by \(g \) and assume
\[
a_1 = \delta \circ y^{-1} \text{ in which } \delta \text{ is a polynomial in } x \text{ and } z.
\]
Using the same lemma we can solve \(- \mu^{-1} \circ \delta = \frac{\partial g}{\partial z} \) to within a multiple of \(z^{-1} \) and such that \(g \) is in \(\mathcal{K}[x, z] \). Subtracting off the derivation corresponding to this \(y \) leaves us with
\[
a_1 = \delta_0 \circ z^{-1} \circ y^{-1} \text{ in which } \delta_0 \text{ is a polynomial in } x.
\]
The three conditions \[7\] that \((a_1, a_2, a_3) \) be a derivation can be written in the form
\[
-d(\frac{\partial (d_{12}^{-1} a_2)}{\partial y}) o d_{12}^{-1} + \frac{\partial a_1}{\partial x} o d_{21} + \frac{\partial a_1}{\partial z} o d_{31} + \frac{\partial a_1}{\partial z} o d_{23} = 0,
\]
(28)
\[
y^{-1} \circ \frac{\partial (\mu^{-1} a_3)}{\partial z} \circ \mu^2 + \frac{\partial d_{13}}{\partial y} o a_2 + \frac{\partial a_1}{\partial y} o d_{32} + \frac{\partial a_3}{\partial y} o d_{21} = 0,
\]
(29)
in which $\mu = 1 + \beta z^{p-1}$.

The last three terms of (28) are in $y^{p-1} \circ \mathfrak{H}$ since a_1, and d_{31} are. Hence both $-d_{12}^2 \circ \partial (d_{12}^{-1} \circ a_2) / \partial y$ and $\partial (d_{12}^{-1} \circ a_2) / \partial y$ are in $y^{p-1} \circ \mathfrak{H}$. But the second polynomial is of degree at most $p - 2$ in y and hence is 0. Therefore there is a polynomial δ_1 independent of y and such that $a_2 = \delta_1 \circ d_{12}$.

Identity (28) now reduces to

$$
\left(- \alpha x^{p-1} \circ \frac{\partial (\mu^{-1} a_3)}{\partial z} \circ \mu^2 + \frac{\partial d_{23}}{\partial x} \circ a_1 + \frac{\partial a_2}{\partial y} \circ d_{32} + \frac{\partial a_2}{\partial x} \circ d_{31} + \frac{\partial a_3}{\partial x} \circ d_{12} = 0 \right)
$$

(30)

Arguing on the degree of z in each term of (31) we can conclude $\delta_0 / \delta x = 0$ and δ_0 is independent of x. But $\delta z^{p-1} \circ y^{p-1} = \delta z^{p-1} \circ d_{13}$ and

$$
(\delta z^{p-1} \circ d_{13}, \delta z^{p-1} \circ d_{23}, 0)
$$

is a derivation of A. Subtracting off this derivation we can assume $a_1 = \delta_0 = 0$.

From (31), since δ_1 is independent of y, we also get δ_1 independent of z, i.e., δ_1 is a polynomial in $\mathfrak{G}[x]$. Therefore we can find a polynomial g in $\mathfrak{G}[x]$ that is a solution of $\delta_1 \circ d_{12} = d_{21} \circ \partial g / \partial x$ to within a constant multiple of x^{p-1}, say ηx^{p-1}.

Subtracting off the derivation

$$
\left(0, d_{21} \circ \frac{\partial g}{\partial x} - \eta x^{p-1} \circ d_{21}, d_{31} \circ \frac{\partial g}{\partial x} - \eta x^{p-1} \circ d_{31} \right)
$$

we can assume $a_1 = a_2 = 0$. Equations (29) and (30) now reduce to

$$
- y^{p-1} \circ \frac{\partial (\mu^{-1} a_3)}{\partial z} \circ \mu^2 + \frac{\partial a_3}{\partial y} \circ d_{21} = 0,
$$

(32)

$$
- \alpha x^{p-1} \circ \frac{\partial (\mu^{-1} a_3)}{\partial z} \circ \mu^2 + \frac{\partial a_3}{\partial x} \circ d_{12} = 0.
$$

Since d_{21} is nonsingular we can argue on the degree of y to get $\partial a_3 / \partial y = 0$ and a_3 is independent of y. In the same manner a_3 is independent of x. But then $\mu^{-1} a_3$ is independent of z. Hence $a_3 = \eta \mu$ for $\eta \in \mathfrak{G}$.

By direct substitution in (32) it can be seen that $(0, 0, \eta \mu)$ is a derivation of \mathfrak{H}. We investigate to see if it is of the form (a_1, a_2, a_3) in which
If \(a_1 = a_2 = 0 \) then \(a_3 \) modulo \(y^{p-1} \) is independent of \(y \). In the same way \(g \) is independent of \(x \). Therefore

\[a_3 = -x^{p-1} \circ y^{p-1} \circ \mu \circ (\alpha_1 + \alpha_2) \]

which is not of the form \(\eta \mu \) for \(\eta \in \mathfrak{g} \).

We can now conclude:

Theorem 4. Let \(\mathfrak{g} \) be a simple, nodal, Lie-admissible noncommutative Jordan algebra of characteristic \(p \neq 2 \) with \(2r + 1 \) generators; then the derivation algebra \(\mathcal{D}(\mathfrak{g}) \) of \(\mathfrak{g} \) is the set of all mappings

\[
 f \rightarrow \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i} \circ a_i \right)
\]

in which

\[
 a_i = \sum_{j=1}^{n} \left(\frac{\partial g}{\partial x_j} + \alpha_j x_j^{p-1} \right) \circ c_{ij},
\]

\[
 a_{2r+1} = \sum_{2r-1}^{2n} \left(\frac{\partial g}{\partial x_i} + \alpha_i x_i^{p-1} \right) \circ c_{2r+1} + \eta \mu
\]

for \(i = 1, \ldots, 2r \). (In case \(i < 2r - 1 \) then \(a_i \) reduces to a single summand.) The dimension of \(\mathcal{D}(\mathfrak{g}) \) is \(p^{2r+1} + 2r + 1 \).

To determine the dimension of \((\text{adj } \mathfrak{g})' \) we proceed as in the even-dimensional case. Let \(\mathfrak{I} \) be an ideal of \(\mathfrak{g} \) containing all of the generators \(x_1, \ldots, x_{2r} \). Using only the generators \(x_1, \ldots, x_{2r-2} \) we have the result from the even-dimensional case that the only possible residue classes modulo \(\mathfrak{I} \) are the classes determined by \(1 \) and the polynomials of the form \(m \) in which \(q = x_1^{p-1} \circ \cdots \circ x_{2r-2}^{p-1} \) and \(m \) is a polynomial in \(x_{2r-1}, x_{2r} \), and \(x_{2r+1} \). We adopt the notation above using \(x, y \) and \(z \), \(x_{2r-1}, x_{2r} \), and \(x_{2r+1} \) respectively. Assume \(m \) is a monomial and \(m = x^i \circ n \), \(n \) independent of \(x \) and \(i < p - 1 \); then

\[
 \left(\frac{1}{i+1} q \circ x^{i+1} \circ n \right) D_y = -q \circ m \circ d_{12}.
\]

Also if \(m = y^i \circ n \), \(n \) independent of \(y \) and \(i < p - 1 \) then

\[
 \left(\frac{1}{i+1} q \circ y^{i+1} \circ n \right) D_x = q \circ m \circ d_{12}.
\]
Hence the only remaining residue classes of \(\mathfrak{S} \) to examine are those determined by \(q \circ x^{p-1} \circ y^{p-1} \circ n \) in which \(n \) is a polynomial in \(z \). However the equation
\[
(q \circ x^{p-1} \circ t) D_x = q \circ x^{p-1} \circ y^{p-1} \circ \frac{\partial t}{\partial y} \circ \mu = q \circ x^{p-1} \circ y^{p-1} \circ n
\]
can be solved for \(t \), a polynomial in \(\mathfrak{R}[z] \), to within a scalar multiple of \(q \circ x^{p-1} \circ y^{p-1} \circ z^{p-1} \). Hence the only possible residue class of \(\mathfrak{S} \) is that containing \(q \circ x^{p-1} \circ y^{p-1} \circ z^{p-1} \). If \(S = \emptyset \) (the set of all \(i = 1, \ldots, r \) such that \(c_{i+r} \in \mathfrak{S} \)) and \(\beta \neq 0 \) then as we have seen in the even-dimensional case \(q \circ x^{p-1} \circ y^{p-1} \circ \mu \in \mathfrak{S} \) and \((q \circ x^{p-1} \circ y^{p-1} \circ z^{p-1}) D_x = (q \circ x^{p-1} \circ y^{p-1} \circ \mu) \in \mathfrak{S} \). Therefore \(q \circ x^{p-1} \circ y^{p-1} \circ z^{p-1} \in \mathfrak{S} \).

If \(\mathfrak{S} \) is the ideal in \(\mathfrak{U}^- \) such that \(\mathfrak{U}^- / \mathfrak{S} \) is isomorphic to \((\text{adj } \mathfrak{U}^-)' \), then we can show, exactly as in the even-dimensional case, that \(q \circ x^{p-1} \circ y^{p-1} \circ z^{p-1} \) is not in \(\mathfrak{S} \) if either \(S \neq \emptyset \) or \(\beta = 0 \). Hence (adj \(\mathfrak{U}^- \)' is of dimension \(p^{2r-1} - 1 \) or \(p^{2r+1} - 2 \). We now examine the ideals of (adj \(\mathfrak{U}^- \)' . Let \(\mathfrak{S} \) be an ideal of (adj \(\mathfrak{U}^- \)' . (We again use the notation of \(\mathfrak{U}^- \)). As in the even-dimensional case we can assume there are polynomials of the form \(x_i \circ m \) for any \(i \leq 2r - 1 \) and in which \(m \) is a polynomial in \(\mathfrak{R}[x,y,z] \).

Consider those polynomials \(x \circ m \). If \(m \) is in \(\mathfrak{R}[x] \) we choose a \(k \) so that
\[
(x_1 \circ m) D(x_1 \circ x_1 + r \circ x^k) = x_1 \circ x^{p-1}.
\]
If \(m \notin \mathfrak{R}[x] \), write
\[
m = m_1 + \sum_k x^1 \circ n_i
\]
in which \(m_1 \) is a polynomial in \(x \), every term of every nonzero \(n_i \) has either a \(y \) or \(z \) in it and some \(n_i \neq 0 \). If \(k \neq 0 \) then
\[
(x_1 \circ m) D(x^{p-k}) = -k x^{p-1} \circ n_1 D_x \circ x_1 \neq 0
\]
is in \(\mathfrak{S} \). If \(k = 0 \) then
\[
(x_1 \circ m) D(x^{p-1}) = (-n_0 D_x \circ x^{p-2} - x^{p-1} \circ n_1 D_x) \circ x_1 \neq 0
\]
is in \(\mathfrak{S} \). If \(n_0 D_x \circ \) and \(n_1 D_x \) are in \(\mathfrak{R} \) then as above we can conclude \(x_1 \circ x^{p-1} \in \mathfrak{S} \).

If \(n_0 D_x \) is in \(\mathfrak{R} \) but \(n_1 D_x \) is not then
\[
(x_1 \circ m) D(x^{p-1} D_x) = -x^{p-1} \circ x_1 \circ n_1 D_x D_x \neq 0
\]
is in \(\mathfrak{S} \). If \(n_0 D_x \notin \mathfrak{R} \) then
\[
(x_1 \circ m) D(x^{p-1} D(x^2)) = -2 n_0 D_x^2 \circ x^{p-1} \circ x_1 \neq 0
\]
is in \(\mathfrak{S} \). In any case, there is a polynomial \(x_1 \circ x^{p-1} \circ m \) in \(\mathfrak{S} \) in which \(m \in \mathfrak{R}[y,z] \). If \(m \) is in \(\mathfrak{R} \) we can proceed as in the even-dimensional case to show that \(x_i, \ldots, x_{2r} \) are in \(\mathfrak{S} \).
If \(m \) is independent of \(y \) then assume \(m \) is such a polynomial of minimal degree in \(z \). We have

\[
(x_1 \circ x^{p-1} \circ m)D^p_z = x_1 \circ x^{p-1} \circ \frac{\partial m}{\partial z}.
\]

By the minimality of the degree of \(z \) in \(m \) we have \(\partial m/\partial z = 0 \), \(m \in \mathcal{I} \) and \(x_1 \circ x^{p-1} \in \mathfrak{I} \).

If \(m \) is not independent of \(y \) then

\[
(x_1 \circ x^{p-1} \circ m)D^{p-2}_y = x_1 \circ x \circ m
\]
is in \(\mathfrak{I} \). Let \(k \) be the smallest exponent of \(y \) in \(m \). If \(k = 0 \) then \((x_1 \circ x \circ m)D_z = x_1 \circ y^{p-1} \circ m \circ \mu = x_1 \circ y^{p-1} \circ n \) is in \(\mathfrak{I} \) for some polynomial \(n \) in \(\mathbb{F}[z] \). If \(k \neq 0 \) then \((x_1 \circ x \circ m)D(y^{p-k}) = kx_1 \circ y^{p-1} \circ n \) is in \(\mathfrak{I} \) for some polynomial \(n \) in \(\mathbb{F}[z] \). Choose \(n \) to be of minimal degree in \(z \). Then as above we can show \(n \) is in \(\mathfrak{I} \) and \(x_1 \circ y^{p-1} \in \mathfrak{I} \).

Thus either \(x_1 \circ x^{p-1} \) or \(x_1 \circ y^{p-1} \) is in \(\mathfrak{I} \). As in the even-dimensional case this implies \(x_1, \ldots, x_{2r} \), are in \(\mathfrak{I} \). Hence from our conclusion above on such ideals \(\mathfrak{I} \) we have \((\text{adj } \mathfrak{A})' \) is simple. Thus

Theorem 5. If \(\mathfrak{A} \) is a simple, Lie-admissible nodal noncommutative Jordan algebra of characteristic \(p \neq 2 \) with \(2r + 1 \) generators then \((\text{adj } \mathfrak{A})' \) is a simple Lie-algebra. The dimension of \((\text{adj } \mathfrak{A})' \) is \(p^{2r-1} - 1 \) if \(\mathcal{G} = \emptyset \) and \(\beta \neq 0 \) and is \(p^{2r+1} - 2 \) if either \(\mathcal{G} \neq 0 \) or \(\beta = 0 \).

References

Institute for Defense Analyses, Princeton, New Jersey
Michigan State University, East Lansing, Michigan