1. Introduction and statement of results. Let \(\mathbb{R}^n \) be \(n \)-dimensional Euclidean space and let \(G \) be a finite group of orthogonal transformations of \(\mathbb{R}^n \) generated by reflections. Let \(V = \mathbb{C}^n \) be the complexification of \(\mathbb{R}^n \). Then \(G \) acts naturally in \(V \) and we say that \(G \) is a Euclidean reflection group in \(V \). Let \(S \) be the \(\mathbb{C} \)-algebra of complex-valued polynomial functions on \(V \), let \(\mathcal{I}(S) \) be the subalgebra of polynomials invariant under \(G \) and let \(F \) be the ideal of \(S \) generated by the homogeneous elements of positive degree in \(\mathcal{I}(S) \). Chevalley \([2]\) has proved that

(a) \(\mathcal{I}(S) \) is generated over \(\mathbb{C} \) by \(n \) algebraically independent homogeneous polynomials \(f_1, \ldots, f_n \) and the unit element.

(b) \(S \neq F \) as \(G \)-module affords the regular representation of \(G \).

In view of (b) every irreducible \(G \)-module \(M \) occurs in \(S/F \) with multiplicity equal to \(\dim M \). Since \(F \) is a homogeneous ideal, \(S/F = \sum_q (S/F)_q \) is naturally graded. We prove two theorems concerning the graded \(G \)-module structure of \(S/F \).

The symmetric group \(G \) of degree \(n \) acts naturally as a Euclidean reflection group in \(V \) by permuting the elements of a basis. The irreducible characters of \(G \) are in 1-1 correspondence with partition diagrams of \(n \) nodes \([6]\). In the set of partition diagrams there is a natural ordering. The evidence suggests that characters which occur early in this ordering occur early in the decomposition \(S/F = \sum_q (S/F)_q \) in the sense that they occur for small values of \(q \). On the other hand, a formula of Frobenius \([6, \text{p. 534}]\) indicates that if a character occurs early in the partition ordering, then a reflection (transposition) fixes a large part of the corresponding representation space. These observations led to the following.

Theorem 1. Let \(G \) be a Euclidean reflection group and let \(M \) be an irreducible \(G \)-module. Let \(\gamma \in G \) be a reflection, let \(M^-_{\gamma} \) be the subspace of all \(x \in M \) such that \(\gamma x = -x \) and suppose that \(\dim M^-_{\gamma} = \dim M^- \) is independent of \(\gamma \). If \(M \) is an irreducible constituent of \(\sum_q (S/F)_q \) for precisely the values \(q_1(M), \ldots, q_r(M) \), \(l = \dim M \), then the average of the \(q_i(M) \) is

\[
\frac{\dim M^-}{\dim M} r
\]

where \(r \) is the number of reflections in \(G \).

Received by the editors June 7, 1963.

(1) This research was supported by the National Science Foundation under grant G-21514

274
The assumption that \(\dim M^- \) is independent of \(\gamma \) is satisfied for all \(M \) when the reflections in \(G \) form a single conjugate class, and is satisfied for the irreducible modules \(E_p \) of Theorem 2 when \(G \) is a Weyl group. The extreme cases in Theorem 1 are given by \(\dim M^- = 0 \), corresponding to the principal character, and \(\dim M^- = \dim M \), corresponding to the alternating character of \(G \).

Theorem 2. Let \(L \) be a complex simple Lie algebra and let \(V \) be a Cartan subalgebra of \(L \). Let \(G \) be the Weyl group of \(L \) acting in \(V \). Let \(E_p \) be the \(G \)-module of alternating multilinear \(p \)-forms over \(V \). Then \(E_p \) is irreducible and occurs as a constituent of \((S/F)^q \) for precisely the values \(q = m_{i_1} + \cdots + m_{i_p}, \)

\[
i_1 < \cdots < i_p,
\]

where \(m_i + 1 \) is the degree of \(f_i \). A basis for the isotypic component of \(S/F \) of type \(E_p \) is given by the set of minors of order \(p \) of the Jacobian matrix \(J \) of \(f_1, \ldots, f_n \) reduced mod \(F \).

The irreducibility of the modules \(E_p \) for Weyl groups of the exceptional Lie algebras \(E_6, E_7 \) was noticed by Frame \cite{5}. It seems likely that Theorem 2 is true for all the Euclidean reflection groups. The proof we give depends on a theorem of Burnside \cite{1} on Weyl groups which allows us to compute certain invariants of \(G. \)

Theorem 2 and its proof have the following corollaries:

(2a) All minors of \(J \) are linearly independent over \(C \) and remain linearly independent after reduction mod \(F \). In particular, none of them vanish.

(2b) The algebra of invariants \(I(S/F \otimes E) \) is an exterior algebra over \(C \) on \(n \) generators.

(2c) If \(E = \sum E_p \) is the Grassmann algebra of \(V \), then the algebra of invariants \(I(E \otimes E) \) is a truncated polynomial algebra over \(C \), generated by the unit and an element \(w \) such that \(w^{n+1} = 0 \). The generator \(w \) may be identified with the Killing form.

(2d) For each \(p = 0, \ldots, n \) there exists a homogeneous isomorphism

\[
I(S/F \otimes E_p) \simeq I(S/F \otimes E_{n−p})
\]

of graded vector spaces. Existence of this isomorphism for \(p = 1 \) is equivalent to so-called double duality in the exponents \(m_i \), the fact that if the \(m_i \) are arranged in increasing order \(m_1 \leq \cdots \leq m_n \) then \(m_i + m_{n−i+1} \) is independent of \(i \).

The double duality in the exponents \(m_i \) was a long standing mystery for Weyl groups, explained a few years ago by Coleman \cite{3} and Kostant \cite{7}. Even if one assumes the double duality as known, the argument in (2d) does not furnish an explicit isomorphism \(I(S/F \otimes E_1) \simeq I(S/F \otimes E_{n−1}) \). We prove the existence of the isomorphism by computing the Poincaré series of both spaces. It would thus be interesting to give a direct invariant-theoretic proof for the double duality by exhibiting an isomorphism which is in some sense a natural one. We have not been able to do this, but present a line of argument which seems to lead in the right

(2) Added in proof. R. Steinberg has kindly shown me a proof of irreducibility which is independent of Burnside’s theorem. His argument is valid for all the Euclidean groups.
We study the space of those differential 1-forms on \(V \) which are skew invariant under \(G \), in the sense that they are invariant under the rotation subgroup \(H \) of \(G \) and change sign under the elements outside \(H \). It is not hard to show that this space is a free module over \(I(S) \) of rank \(n \). From the double duality and the fact that \(G \) has a unique invariant quadratic form one concludes that among the polynomials \(f_1, \ldots, f_n \) there is a unique polynomial \(f_n \) of greatest degree. Then assuming the double duality we prove the following.

Theorem 3. Let \(G \) be an irreducible Euclidean reflection group in \(V \). Choose coordinates in \(V \) and let \(u_1, \ldots, u_n \) be the minors of order \(n - 1 \) of \(J \) obtained by deleting the partial derivatives of \(f_n \). If \(u_1, \ldots, u_n \) are algebraically independent, then there exists a homogeneous derivation \(\delta: S \to S \otimes E_1 \) of \(S \)-modules such that \(\delta f_1, \ldots, \delta f_n \) are a basis for the module of skew invariant differential 1-forms over \(I(S) \).

Granted the existence of the map \(\delta \), we can construct an explicit isomorphism \(I(S/F \otimes E_1) \simeq I(S/F \otimes E_{n-1}) \). We have been able to verify the algebraic independence of \(u_1, \ldots, u_n \) in special cases but have no general argument. If the \(u_i \) are algebraically independent, then the Jacobian (determinant) of the \(u_i \) must be a constant multiple of \((\det J)^{n-2} \).

We work over the complex field \(\mathbb{C} \) as a matter of convenience, and irreducibility of modules will mean irreducibility over \(\mathbb{C} \). The complex field is probably an alien here because a likely conjecture of Kostant states that all the absolutely irreducible representations of a Euclidean reflection group may be written with coefficients in \(\mathbb{R} \). In any case, a real linear group which contains a reflection and is irreducible over \(\mathbb{R} \) remains irreducible over \(\mathbb{C} \).

2. **Notation.** In this section we introduce some notation and collect some elementary facts about invariants and characters. Let \(G \) be a finite group of order \(g \). By a graded \(G \)-module we mean a \(G \)-module which is a graded vector space \(M = \sum_{q \geq 0} M_q \) over \(\mathbb{C} \), in which each homogeneous component \(M_q \) is a \(G \)-module finite dimensional over \(\mathbb{C} \). Let \(\mu_q \) be the character of \(G \) corresponding to the module \(M_q \). To the graded \(G \)-module \(M \) we let correspond the series

\[
M(t, \gamma) = \sum_{q \geq 0} \mu_q(\gamma)t^q, \quad \gamma \in G.
\]

For \(\gamma = 1 \) this becomes the Poincaré series

\[
M(t) = \sum_{q \geq 0} (\dim M_q)t^q
\]

of the graded vector space \(M \). All the tensor products we consider are tensor products over \(\mathbb{C} \). If \(M, N \) are graded \(G \)-modules, then \(M \otimes N \) has a natural structure of graded \(G \)-module with the grading and \(G \)-module structure defined by
(1) \((M \otimes N)_q = \sum_{a+b=q} M_a \otimes N_b \),
\[
\gamma(x \otimes y) = \gamma x \otimes \gamma y, \quad x \in M, y \in N, \gamma \in G.
\]

From the fact that the character of a tensor product (direct sum) of two \(G \)-modules is the product (sum) of the characters it follows that
\[
(M \otimes N)(t, \gamma) = M(t, \gamma)N(t, \gamma).
\]

We let \(I(M) \) denote the submodule of invariants of \(M \), elements \(x \in M \) such that \(\gamma x = x \) for all \(\gamma \in G \). For a finite dimensional \(M \) with character \(\mu \) the connection between invariants and characters is the formula
\[
dim I(M) = \frac{1}{g} \sum_{\gamma \in G} \mu(\gamma).
\]

Thus for a graded \(M \) we have
\[
I(M)(t) = \frac{1}{g} \sum_{\gamma \in G} M(t, \gamma).
\]

The dual \(M^* \) of \(M \) has a natural \(G \)-module structure defined by
\[
(\gamma f)(x) = f(\gamma^{-1} x), \quad x \in M, f \in M^*, \gamma \in G,
\]
and we may extend this action to the algebra of polynomial functions on \(M \) or the Grassmann algebra of \(M \). If \(\mu \) is the character of \(M \) then \(\mu^*(\gamma) = \mu(\gamma^{-1}) \) is the character of \(M^* \). We have an isomorphism \(M \cong M^* \) of \(G \)-modules if and only if the character of \(M \) is real. The space \(\text{Hom}_C(M, N) \) has a natural \(G \)-module structure defined by
\[
(\gamma \phi)(x) = \gamma(\phi(\gamma^{-1} x)), \quad x \in M, \phi \in \text{Hom}_C(M, N), \gamma \in G,
\]
and the submodule \(I(\text{Hom}_C(M, N)) \) is just the space \(\text{Hom}_G(M, N) \) of \(G \)-module homomorphisms. The natural isomorphism of vector spaces \(\text{Hom}_C(M, N) \cong N \otimes M^* \) is an isomorphism of \(G \)-modules and induces an isomorphism \(\text{Hom}_G(M, N) \cong I(N \otimes M^*) \). In particular we see that if \(M \) is irreducible then \(\dim I(N \otimes M^*) \) is the multiplicity of \(M \) in \(N \), and that \(M \) is irreducible if and only if \(\dim I(M \otimes M^*) = 1 \).

3. Let \(G \) be a Euclidean reflection group in \(V \) and let \(S \) be the algebra of complex valued polynomial functions on \(V \). Then \(S = \sum_{q \geq 0} S_q \) has a natural structure of graded \(G \)-module. A formula of Molien, easy to verify by assuming \(\gamma \) in diagonal form, states that
\[
S(t, \gamma^{-1}) = \frac{1}{(1 - \omega_1(\gamma)t) \cdots (1 - \omega_n(\gamma)t)}
\]
where \(\omega_1(\gamma), \ldots, \omega_n(\gamma) \) are the eigenvalues of \(\gamma \) as linear transformation of \(V \).
If M is a finite dimensional G-module we give $S \otimes M$ the grading defined by $(S \otimes M)_q = S_q \otimes M$. Then Molien's formula implies

\begin{equation}
I(S \otimes M)(t) = \frac{1}{g} \sum_{\gamma \in G} \frac{\mu(\gamma^{-1})}{(1 - \omega_1(\gamma)t) \cdots (1 - \omega_n(\gamma)t)}
\end{equation}

where μ is the character of M. From Theorem (a) of Chevalley we see that

\begin{equation}
I(S)(t) = \frac{1}{(1 - t^{m_1+1}) \cdots (1 - t^{m_n+1})}.
\end{equation}

Chevalley has also shown [2] that if $p_1, \ldots, p_k \in S$ form a C-basis for S/F when reduced mod F, then p_1, \ldots, p_k are a basis for S as free module over $I(S)$. From this fact we readily deduce the following two lemmas.

Lemma 1. Let τ_q be the character of $(S/F)_q$. Then

\[\sum_q \tau_q(\gamma)t^q = \frac{(1 - t^{m_1+1}) \cdots (1 - t^{m_n+1})}{(1 - \omega_1(\gamma)t) \cdots (1 - \omega_n(\gamma)t)}.
\]

Proof. Let $p_1, \ldots, p_k \in S$ form a C-basis for S/F when reduced mod F. Then the map $\sum_is_i \rightarrow \sum_is_i \otimes (p_i + F)$, $s_i \in I(S)$ defines an isomorphism $S \simeq I(S) \otimes S/F$ of graded G-modules. Since G acts trivially on $I(S)$ we have $S(t, \gamma) = I(S)(t)(S/F)(t, \gamma)$. Thus from (3.1) and (3.3)

\[(S/F)(t, \gamma^{-1}) = \frac{(1 - t^{m_1+1}) \cdots (1 - t^{m_n+1})}{(1 - \omega_1(\gamma)t) \cdots (1 - \omega_n(\gamma)t)}
\]

which proves the lemma.

If we let $t \rightarrow 1$ we find $\sum_q \tau_q(\gamma) = 0$ if $\gamma \neq 1$ and $\sum_q \tau_q(1) = g$, so that $\sum_q \tau_q$ is the character of the regular representation of G. Thus S/F affords the regular representation of G. If M is an irreducible G-module we let $a_q(M)$ be the multiplicity of M in $(S/F)_q$. Since S/F contains M with multiplicity $\dim M$ we have

\[\sum_q a_q(M) = \dim M.
\]

We view $S \otimes M$ naturally as an S-module and then $I(S \otimes M)$ is an $I(S)$-module.

Lemma 2. Let M be an irreducible G-module. Then $I(S \otimes M)$ is a free module over $I(S)$. It has a basis over $I(S)$ consisting of homogeneous elements in which the number of elements of degree q is $a_q(M^*)$. The rank of $I(S \otimes M)$ as $I(S)$-module is equal to $\dim M$.

Proof. In the proof of Lemma 1 we have remarked that $S \simeq I(S) \otimes (S/F)$ and hence $S \otimes M \simeq I(S) \otimes (S/F) \otimes M$. Since G acts trivially on $I(S)$ we see by averaging over the group that $I(S \otimes M) \simeq I(S) \otimes (I(S/F) \otimes M)$. Thus $I(S \otimes M)$ is free over $I(S)$ and we may choose as bases a C-basis for $I(S/F \otimes M)$. This may be
chosen as a union of \(C \)-bases for the \(I((S/F)_q \otimes M) \). But \(\dim I((S/F)_q \otimes M) \) is the multiplicity of the irreducible \(M^* \) in \((S/F)_q \) so \(\dim I((S/F)_q \otimes M) = a_q(M^*) \). The rank of \(I(S \otimes M) \) as \(I(S) \)-module is thus \(\sum a_q(M^*) = \dim M^* = \dim M \). The argument shows that \(I(S \otimes M) \) is free over \(I(S) \) for any \(G \)-module \(M \).

4. To prove Theorem 1 we simply compute the Poincaré series \(I(S \otimes M^*)(t) \) in two ways and compare the results for \(t = 1 \). Set \(a(t) = \sum a_q(M)t^q \). From Lemma 2 with \(M \) replaced by \(M^* \) we have

\[
I(S \otimes M^*)(t) = \frac{a(t)}{(1 - t^{m_1 + 1}) \ldots (1 - t^{m_n + 1})}
\]

and thus from (3.2) we see that

\[
\left(1 + \sum_{y \in G_1} \mu(y) t^{a_1} \right) \prod_{y \in G_1} \frac{1}{(1 - t^{a_1} + \cdots + t^{a_n})} = \frac{a(t)}{(1 - t^{m_1 + 1}) \ldots (1 - t^{m_n + 1})}
\]

where \(\mu \) is the character of \(M \). Let \(G_1 \) be the set of elements of \(G \), distinct from the identity, which fix an \(n - 1 \) dimensional subspace of \(V \). For \(\gamma \in G_1 \) the eigenvalues \(\omega_\gamma \) are \(1, 1, \ldots, 1, \omega \) where \(\omega \) is a root of unity. Now the fact that \(G \) may be written as a real orthogonal group implies \(\omega = -1 \). The left-hand side of (4.1) becomes

\[
\frac{1}{g} \left[\frac{\mu(1)}{(1 - t)^n} + \frac{1}{(1 - t^{a_1} + \cdots + t^{a_n})} \sum_{y \in G_1} \mu(y) + \cdots \right]
\]

where \(\cdots \) denotes terms which have at most \((1 - t)^{n-2} \) in the denominator. Since \(a(1) = \sum a_q(M) = \dim M = \mu(1) \) we have

\[
\frac{1}{(1 - t)^{a_1} + \cdots + t^{a_n}} \sum_{y \in G_1} \mu(y) + \cdots = \frac{ga(t)}{(1 - t^{m_1 + 1}) \ldots (1 - t^{m_n + 1})} - \frac{a(1)}{(1 - t)^n}.
\]

Now multiply both sides by \((1 - t)^{n-1} \) and let \(t \to 1 \). Using the known formula [4; 8] \(g = \prod_i (m_i + 1) \) for the group order we find

\[
\frac{1}{2} \sum_{y \in G_1} \mu(y) = -a'(1) + \frac{1}{2} \left(\sum m_i \right) a(1)
\]

where \(a' \) denotes the derivative with respect to \(t \). For \(\gamma \in G_1 \), \(\mu(\gamma) = \dim M_\gamma^- \) - \(\dim M^- \gamma \) is, by assumption, independent of \(\gamma \). The number of elements in \(G_1 \) is the number of reflections in \(G \) which is known [4; 8] to be \(\sum m_i \). From the definition of \(a(t) \) we have \(a'(1) = \sum_q qa_q(M) \). If we insert this information in (4.2) we find

\[
\frac{1}{2} \left(\sum m_i \right) (\dim M^+ - \dim M^-) = - \sum_q qa_q(M) + \frac{1}{2} \left(\sum m_i \right) (\dim M^+ + \dim M^-)
\]
so that
\[\sum_q q a_q(M) = \left(\sum_i m_i \right) \dim M^{-}. \]
The average of the \(q_i(M) \) is then
\[\frac{\sum_q q a_q(M)}{\sum_q a_q(M)} = \frac{\dim M^{-}}{\dim M} r \]
with \(r = \sum_i m_i \). The significance of the integer \(r = \sum_i m_i \) in this formula becomes clear if one observes, with Lemma 1, that \(r \) is the largest integer \(q \) for which \((S/F)_q \neq 0 \).

5. To prove Theorem 2 we shall need some results from an earlier article [9] together with a lemma concerning certain invariants of the symmetric group. Let \(E = \sum_p E_p \) be the Grassman algebra of \(V \). The homogeneous component \(E_p \) of degree \(p \) is the space of all \(p \)-linear alternating functions on \(V \). We identify \(E_0 \) with \(C \) and \(E_1 \), as vector space, with \(S_1 \). The group \(G \) acts naturally on \(E \) and on \(S \otimes E \). Choose a coordinate system \(x_1, \ldots, x_n \) in \(V \) and let \(d : S \otimes E \to S \otimes E \) be the \(C \)-linear map defined by
\[d : s \otimes x_{i_1} \wedge \cdots \wedge x_{i_p} \to \sum_{j=1}^n \frac{\delta s}{\delta x_j} \otimes x_{i_1} \wedge \cdots \wedge x_{i_p}, \quad s \in S. \]
If we identify \(S \) with \(S \otimes C \) then \(dx_i = d(x_i \otimes 1) = 1 \otimes x_i \) so that the elements of \(S \otimes E_p \) may be written in the form
\[\sum_{i_1 < \cdots < i_n} s_{i_1} \cdots i_n dx_{i_1} \cdots dx_{i_n}, \quad s_{i_1} \cdots i_n \in S. \]
It is clear that \(S \otimes E \) is just the algebra of differential forms on \(V \) and that \(d \) is exterior differentiation. Since \(d \) commutes with the action of \(G \) on \(S \otimes E \) it follows that \(d \) maps \(I(S \otimes E) \) onto \(I(S \otimes E) \). In particular, the differentials \(df_i \) are invariants of \(S \otimes E \). We have shown in [9] that the \(C \)-algebra \(I(S \otimes E) \) of invariant differential forms is an exterior algebra on \(n \) generators over the \(C \)-algebra \(I(S) \) of invariant polynomials, and is in fact generated over \(I(S) \) by the differentials \(df_1, \ldots, df_n \) of the polynomial invariants \(f_1, \ldots, f_n \) and the unit element. It follows that
\[I((S \otimes E_p)(t)) = \frac{\sigma_p(t^{m_1}, \ldots, t^{m_n})}{(1 - t^{m_1+1}) \cdots (1 - t^{m_n+1})}, \quad p = 1, \ldots, n, \]
where \(\sigma_p(t_1, \ldots, t_n) \) is the \(p \)th elementary symmetric function in the indeterminates \(t_1, \ldots, t_n \).

Lemma 3. Let \(x_1, \ldots, x_n \) be indeterminates, let \(G \) be the symmetric group on \(x_1, \ldots, x_n \) and let \(E \) be the exterior algebra on \(x_1, \ldots, x_n \) over \(C \). The group \(G \) acts naturally on the commutative algebra \(E \otimes E \). Set
Then

\[I(E_p \otimes E_p) = C u^p \oplus C u^{p-1} v, \quad p = 1, \ldots, n - 1. \]

Proof. Clearly both \(u^p \) and \(u^{p-1} v \) are in \(I(E_p \otimes E_p) \). To hold the indices in check we let \(\Omega \) denote the set of increasing sequences \(i_1 < \cdots < i_p \) of \(p \) integers chosen from \(1, \ldots, n \), we let \(\{ i \} \) be the corresponding unordered set, and write \(x_{(i)} = x_{i_1} \wedge \cdots \wedge x_{i_p} \). Suppose \(y = \sum c_{(i),(k)} x_{(i)} \otimes x_{(k)} \in I(E_p \otimes E_p) \) where \(c_{(i),(k)} \in C \) and the sum is over all pairs \((i),(k) \) of elements of \(\Omega \). If for given sets \(\{ i \}, \{ k \} \) the intersection \(\{ i \} \cap \{ k \} \) contains fewer than \(p - 1 \) elements, then there exist two distinct indices, say \(k_a, k_b \), which are distinct from all elements of \(\{ i \} \). Now apply the transposition \((k_a, k_b) \) of \(G \) to each term in the sum \(y \). The invariance of \(y \) shows that \(c_{(i),(k)} = -c_{(k),(i)} \) and hence \(c_{(i),(k)} = 0 \). Thus we may write \(y = y_1 + y_2 \) where \(y_1 \) is a linear combination of elements \(x_{(i)} \otimes x_{(k)} \) such that \(\{ i \} \cap \{ k \} \) contains \(p \) elements, in other words \(\{ i \} = \{ k \} \), and \(y_2 \) is a linear combination of elements \(x_{(i)} \otimes x_{(k)} \) such that \(\{ i \} \cap \{ k \} \) contains \(p - 1 \) elements. Invariance of \(y \) implies the invariance of \(y_1 \) and \(y_2 \). We thus have \(y_1 = \sum b_{(i)} x_{(i)} \otimes x_{(i)} \) with \(b_{(i)} \in C \) and invariance of \(y_1 \) shows that all the \(b_{(i)} \) are equal, say \(b_{(i)} = b \). Then \(y_2 = b \sum x_{(i)} \otimes x_{(i)} \) is a \(C \)-multiple of \(u^p = \sum x_{(i)} \otimes x_{(i)} \). Similarly with slightly more effort one sees that \(y_2 \) is a \(C \)-multiple of \(u^{p-1} v \). Thus the elements \(u^p, u^{p-1} v \) span \(I(E^p \otimes E^p) \). For \(p < n \) both \(u^p \) and \(u^{p-1} v \) are not zero and hence linearly independent over \(C \). This proves the lemma. The argument breaks down for \(p = n \) only because \(u^{n-1} v = 0 \) and in that case we have \(I(E_n \otimes E_n) = C u^n \). The elements \(u, v \) also satisfy the relations \(u^{n+1} = 0 \) and \(v^2 = 0 \).

We are now in position to prove Theorem 2. Since \(L \) is simple, \(G \) acting in \(V \) is an irreducible group. A theorem of Burnside [1] states that there exists a coordinate system \(x_1, \ldots, x_n \) in \(V \) such that \(G \) acting on \(V^* \sim E_1 \) includes the symmetric group \(H \) on \(x_1, \ldots, x_n \). In this coordinate system the Killing form must be

\[\frac{a}{2} \sum_i x_i^2 + b \sum_{i<k} x_i x_k \in I(S_2) \]

where \(a, b \) are real numbers. We cannot have \(a = 0 \) because the form is positive definite. We let \(I(E \otimes E) \) denote the elements of \(E \otimes E \) invariant under \(G \) and \(I_H(E \otimes E) \) the elements invariant under \(H \). Under the map \(f \to \sum (\partial f/\partial x_i) \otimes x_i \) of \(S_2 \to E_1 \otimes E_1 \) the Killing form maps into \(au + bv \in I(E_1 \otimes E_1) \) where \(u, v \in I_H(E_1 \otimes E_1) \) are the invariants of Lemma 3. Since \(I(E \otimes E) \subseteq I_H(E \otimes E) \), Lemma 3 shows that \(\dim(I(E_p \otimes E_p)) \leq 2 \). Suppose \(\dim(I(E_p \otimes E_p)) = 2 \) for some \(p = 1, \ldots, n - 1 \). We prove that \(\dim(I(E_{n-1} \otimes E_{n-1})) = 2 \). If \(p = n - 1 \) there is nothing to prove so assume \(p < n - 1 \). From Lemma 3 we see that \(u^p \in I(E_p \otimes E_p) \) and \(u^{p-1} v \in I(E_p \otimes E_p) \). Since \(v^2 = 0 \) it follows that both \(au^p v = u^{p-1} v (au + bv) \) and \(au^{p+1} + bu^p v = u^p (au + bv) \) are in \(I(E_{p+1} \otimes E_{p+1}) \). Since \(p < n - 1 \) we
have \(u^p v \neq 0 \) and since \(a \neq 0 \) it follows that \(\dim I(E_{p+1} \otimes E_{p+1}) = 2 \). We conclude by induction that \(\dim I(E_{n-1} \otimes E_{n-1}) = 2 \). Let \(Z \) be the 1-dimensional \(G \)-module defined by the homomorphism \(\gamma \to \det \gamma, \gamma \in G \). Then \(E_{n-1} \cong E_1 \otimes Z \) as \(G \)-modules. Since \(\det \gamma = \pm 1 \), \(Z \otimes Z \cong C \) is the trivial \(G \)-module. Then \(E_{n-1} \otimes E_{n-1} \cong E_1 \otimes E_1 \) as \(G \)-modules so that \(\dim I(E_1 \otimes E_1) = 2 \) which contradicts the irreducibility of \(E_1 \). Thus \(\dim I(E_p \otimes E_p) = 1 \) for all \(p \) and hence \(E_p \) is irreducible for all \(p \).

Let \(\theta : S \to S/F \) be the natural map and extend \(\theta \) to a map, denoted again \(\theta \), of \(S \otimes E \to S/F \otimes E \) by letting it be the identity on \(E \). Then \(\theta \) is a homomorphism of \(G \)-modules and of \(C \)-algebras. Since \(\theta \) is a homomorphism of \(G \)-modules we certainly have \(\theta I(S \otimes E) \subseteq I(S/F \otimes E) \). Actually we have \(\theta I(S \otimes E) = I(S/F \otimes E) \) because, using complete reducibility of the representations of \(G \), we may choose a graded \(G \)-module \(T \) such that \(S = F \oplus T \) and then \(\theta : I(T \otimes E) \to I(S/F \otimes E) \) is an isomorphism. Set \(z_i = \theta(df_i) \). Since \(I(S \otimes E) \) is generated over \(I(S) \) by the \(df_i \) and the unit element, and since every element \(s \in I(S) \) may be written as \(s = s_0 + s_1 \) with \(s_0 \in C \) and \(s_1 \in F \), it follows that the \(z_i \) together with the unit element generate \(I(S/F \otimes E) \) as algebra over \(C \). Thus the \(\binom{n}{p} \) elements \(z_{i_1} \cdots z_{i_p} \) generate \(I(S/F \otimes E_p) \) as vector space over \(C \). In fact they form a basis for \(I(S/F \otimes E_p) \) because Lemma 2 shows that \(\dim I(S/F \otimes E_p) = \dim E_p = \binom{n}{p} \). Thus the \(z_{i_1} \cdots z_{i_p} \) are linearly independent over \(C \).

The Killing form induces a natural isomorphism \(E_p \cong E_p^* \) of \(G \)-modules and hence a natural isomorphism \(S/F \otimes E_p \cong \text{Hom}(E_p, S/F) \) of \(G \)-modules. Under this isomorphism the invariants \(I(S/F \otimes E_p) \) correspond to \(\text{Hom}_G(E_p, S/F) \). For \((i) \in \Omega \), let \(\phi_{(i)} \) be the image in \(\text{Hom}_G(E_p, S/F) \) of \(z_{i_1} \cdots z_{i_p} \). The linear independence of the \(z_{i_1} \cdots z_{i_p} \) implies linear independence of the \(\phi_{(i)} \). Now if \(M \) is an irreducible \(G \)-module and \(\phi_1, \cdots, \phi_q \) are linearly independent \(G \)-module homomorphisms of \(M \) into a \(G \)-module \(N \) then the sum \(\sum_{l} \phi_{(i)}(M) \) is direct. This follows at once from Schur's lemma by induction on the number of summands. In the case at hand this means that the sum \(\sum_{(i) \in \Omega} \phi_{(i)}(E_p) \) is direct. Since the number of summands is \(\binom{n}{p} = \dim E_p \), the sum \(\sum_{(i) \in \Omega} \phi_{(i)}(E_p) \) is the isotypic component of \(S/F \) of type \(E_p \). Thus \(E_p \) occurs as an irreducible constituent of \((S/F)_q \) for precisely the values \(q = m_{i_1} + \cdots + m_{i_p}, i_1 < \cdots < i_p \). From the definition of \(\phi_{(i)} \) as the image of \(\theta(df_{i_1} \cdots df_{i_p}) \) it follows that a basis for \(\phi_{(i)}(E_p) \) is given by the \(\binom{n}{p} \) minors of \(J \) which involve \(f_{i_1}, \cdots, f_{i_p} \), reduced mod \(F \). This completes the proof of Theorem 2.

For the corollaries we argue as follows:

(2a) The linear independence over \(C \) of the minors of \(J \) after reduction mod \(F \) amounts to the linear independence of the elements \(\theta(df_{i_1} \cdots df_{i_p}) \) over \(C \). This we have shown.

(2b) The proof of the theorem shows that \(I(S/F \otimes E) \) is generated as algebra over \(C \) by the \(z_j = \theta(df_j) \) and the unit element. Since \(z_j \bar{z}_j = -z_j \bar{z}_j, I(S/F \otimes E) \) is a homomorphic image of an exterior algebra on \(n \) generators. But
dim I(S/F ⊗ E) = dim E = 2^n so I(S/F ⊗ E) is in fact an exterior algebra on the
z_i = \theta(df_i).

(2c) The proof of the theorem shows that I(E_p ⊗ E_p) = Cw^p for all p = 1, \ldots, n
where w = au + bv may be identified with the Killing form. Suppose we have an
isomorphism E_p \simeq E_q of G-modules. Then \binom{p}{q} = dim E_p = dim E_q = \binom{n}{q}
so q = p or q = n – p. Suppose q = n – p. Let \chi_p be the character of E_p and let
y \in G be a reflection. Then \chi_p(y) is the pth elementary symmetric function of the
eigenvalues 1, 1, \ldots, 1, -1 so that \chi_p(y) = \binom{n-1}{p} – \binom{n-1}{q-1}. Now \chi_p(y) = \chi_{n-p}(y)
shows n – p = p. Thus in any case q = p. It follows that I(E_p ⊗ E_q) = 0 for q ≠ p and
hence I(E ⊗ E) = \sum_p I(E_p ⊗ E_p) is generated over \mathbb{C} by the unit element and an
element w = au + bv which satisfies w^{n+1} = 0 and which may be identified with
the Killing form.

(2d) From Theorem 2 or directly from (5.1) we conclude that I(S/F ⊗ E_p)(t) = \sigma_p(t^{m_1}, \ldots, t^{m_n}). Thus one has a homogeneous isomorphism

(5.2) I(S/F ⊗ E_1) \simeq I(S/F ⊗ E_{n-1})

of graded vector spaces if and only if there exists an integer k such that
\sum_i \sigma_1(t^{m_1}, \ldots, t^{m_n}) = \sigma_{n-1}(t^{m_1}, \ldots, t^{m_n}). Comparing coefficients on both sides shows
that this condition is equivalent to the existence of an integer k such that
k + m_1 + \ldots + m_{n-i+1} = m_1 + \ldots + m_n. This is equivalent in turn to the statement that
m_1 + m_{n-i+1} is independent of i, the double duality. The same kind of coefficient
comparison shows that double duality implies the isomorphisms

I(S/F ⊗ E_p) \simeq I(S/F ⊗ E_{n-p}).

For later use we remark that (5.2) is equivalent to the existence of a homogeneous
isomorphism

(5.3) I(S ⊗ E_1) \simeq I(S ⊗ E_{n-1})

of graded vector spaces.

6. Let M, N be G-modules. We say that M and N are skew isomorphic if there
exists a 1-1 \mathbb{C}-linear map \theta of M onto N such that \theta x = (\det y)x for all
x \in M and all y \in G. We call \theta a skew isomorphism between M and N. Since
\det y = \pm 1 the relation of skew isomorphism is symmetric. Again we let Z denote
the 1-dimensional G-module defined by the homomorphism y \rightarrow \det y and let z be a
generator of Z. If we set \tilde{M} = M \otimes Z we see that x \rightarrow x \otimes z, x \in M, defines a skew
isomorphism between M and \tilde{M}. Since Z \otimes Z \simeq \mathbb{C}, \tilde{M} \gamma and M are isomorphic as
G-modules.

From Lemma 1 we conclude that \tau'(S/F)(t^{-1}, y) = \det y(S/F)(t, y) where
r = \sum_i m_i. Thus \tau_{r-q}(y) = (\det y)\tau_q(y) for all y \in G and all q = 0, \ldots, r so that
(S/F)_q and (S/F)_{r-q} are skew isomorphic. If M is an irreducible G-module and N
is any G-module, then M is irreducible and the multiplicity of M in N is equal to the multiplicity of M in N. Hence the

Theorem. If M is an irreducible G-module, then the multiplicity of M in (S/F)_q is equal to the multiplicity of M in (S/F)_r where r = \sum m_i. Thus in the notation of Theorem 1, with suitable ordering, q(M) = r - q(M).

We say that x \in M is a skew invariant if yx = (det y)x for all y \in G. Let \hat{I}(M) denote the subspace of skew invariant elements of M. Then the map x \mapsto x \otimes z defines a natural isomorphism \hat{I}(M) \cong I(\hat{M}) of vector spaces. It follows that we have an isomorphism

\[(6.1) \hat{I}(S \otimes M) \cong I(S \otimes \hat{M}) \]

of graded vector spaces which is homogeneous of degree zero. From Lemma 2 we see that \hat{I}(S \otimes M) is free over I(S) of rank equal to dim M.

Since E_n = E_1 is an isomorphism of G-modules, the isomorphism (5.3) equivalent to the double duality becomes

\[(6.2) \hat{I}(S \otimes E_1) \cong I(S \otimes E_1). \]

Now I(S \otimes E_1) is generated freely over I(S) by the df_i. If we can construct the homogeneous derivation \hat{d} of Theorem 3 then \hat{I}(S \otimes E_1) is generated freely over I(S) by the \hat{d}f_i and the homogeneous isomorphism (6.2) is defined by df_i \mapsto \hat{d}f_i. Thus in this formulation the double duality is equivalent to the existence of the map \hat{d}.

In connection with (6.2) it is worth noting that the homogeneous isomorphism \hat{I}(S \otimes E_0) \cong I(S \otimes E_0) amounts to the familiar fact that every skew invariant polynomial may be written as an invariant polynomial multiplied by det J.

7. Let q = m_1 + \cdots + m_{n-1}. We have a sequence of natural maps

\[S_q \otimes E_{n-1} \xrightarrow{\psi_1} S_q \otimes E_1 \xrightarrow{\psi_2} \text{Hom}(E_1, S_q) \xrightarrow{\psi_3} \text{Hom}(S_1, S_q) \]

where \psi_1 is a skew isomorphism of G-modules induced by the natural duality in the Grassman algebra, where \psi_2 is an isomorphism of G-modules induced by the natural isomorphism of vector spaces, and \psi_3 is the isomorphism of G-modules induced by the identification of E_1 with S_1. The composite map

\[\psi : S_q \otimes E_{n-1} \to \text{Hom}(S_1, S_q) \]

is a skew isomorphism of G-modules. Let \eta = \psi(df_1 \cdots df_{n-1}). Since df_1 \cdots df_{n-1} \in I(S_q \otimes E_{n-1}) we have \eta \in \hat{I}(\text{Hom}(S_1, S_q)) so that \eta is a skew homomorphism of S_1 into S_q. Since S_1 is irreducible, \eta must be injective, and from the definition of the map \psi we see that \eta x_i = u_i where u_i is the minor of order n - 1 of J obtained by deleting the derivatives of f_n and the derivatives with respect to x_i.
Our map \(\hat{d}: S \to S \otimes E_1 \) is homogeneous of degree \(-1\) and commutes with the action of \(G \). Let \(\hat{d} = d \circ \eta \). Then \(\hat{d} \) is a skew isomorphism of \(S_1 \) into \(S_{q-1} \otimes E_1 \). Since \(S \) is a polynomial ring we may extend \(\hat{d} \) to a derivation \(\hat{d}: S \to S \otimes E_1 \) of \(S \)-modules. By induction on the degree of a homogeneous element one sees that
\[
d_s y = (\det y) \gamma dy \quad \text{for all } \gamma \in G \quad \text{and all } s \in S.
\]
Thus \(\hat{d} \) maps \(I(S) \) into \(\hat{I}(S \otimes E_1) \).
Since \(\hat{d}x_i = du_i = \sum_k (\partial u_i / \partial x_k) dx_k \) we have
\[
(7.1) \quad \hat{d}f = \sum_i \sum_k \frac{\partial f}{\partial x_i} \frac{\partial u_i}{\partial x_k} dx_k.
\]
We claim that the elements \(\hat{d}f_1, \ldots, \hat{d}f_n \) are linearly independent over \(S \). If not, then we have a relation \(\sum_i s_i \hat{d}f_i = 0 \) where \(s_i \in S \) and where \(s_1 \), say, is not zero. Then multiplication by \(\hat{d}f_2 \cdots \hat{d}f_n \) shows that \(\hat{d}f_1 \cdots \hat{d}f_n = 0 \). On the other hand, computing directly from (7.1) shows that
\[
\hat{d}f_1 \cdots \hat{d}f_n = \det \left(\frac{\partial f_i}{\partial x_k} \right) \det \left(\frac{\partial u_i}{\partial x_k} \right) dx_1 \cdots dx_n
\]
which is not zero in view of our assumption about the algebraic independence of the \(u_i \). Thus the \(\hat{d}f_i \) are linearly independent over \(S \) and the sum \(P = \sum_i I(S) \hat{d}f_i \) is direct. Since \(G \) is a real group it has an invariant quadratic form \(f_1 \) and hence \(m_1 = 1 \). The degree of the map \(\hat{d} \) is thus \(q - 1 = m_1 + \cdots + m_{n-1} - 1 = m_2 + \cdots + m_{n-1} \) and the Poincaré series for the graded vector space \(P \) is thus
\[
P(t) = \frac{t^{m_2 + \cdots + m_{n-1}}(t^{m_1} + \cdots + t^{m_n})}{(1 - t^{m_1+1}) \cdots (1 - t^{m_n+1})}.
\]
On the other hand, using (5.1), (6.1) and the double duality we see that
\[
P(t) = I(S \otimes E_n-1)(t) = \hat{I}(S \otimes E_1)(t). \quad \text{Since } P \subseteq \hat{I}(S \otimes E_1) \text{ is an inclusion of graded vector spaces we have } P = \hat{I}(S \otimes E_1). \text{ Thus } \hat{I}(S \otimes E_1) \text{ is freely generated over } I(S) \text{ by } \hat{d}f_1, \ldots, \hat{d}f_n \text{ and Theorem 3 is proved.}
\]
8. For the symmetric group on \(n \) letters \(x_1, \ldots, x_n \) we can give the following construction for the skew invariant differential 1-forms. Let \(\sigma_1, \ldots, \sigma_n \) be the elementary symmetric functions of \(x_1, \ldots, x_n \) and let
\[
\Delta(x_1, \ldots, x_{n-1}) = \prod_{1 \leq i < j \leq n-1} (x_i - x_j)
\]
be the fundamental skew invariant polynomial for the symmetric group on the letters \(x_1, \ldots, x_{n-1} \). Then a basis for the skew invariant differential 1-forms over the algebra of symmetric functions is given by the forms
\[
\omega_k = \sum_i (-1)^{i+1} \Delta(x_1, \ldots, \tilde{x}_i, \ldots, x_n) \frac{\partial \sigma_k}{\partial x_i} dx_i, \quad k = 1, \ldots, n,
\]
where \(\tilde{x}_i \) means that the letter \(x_i \) is to be omitted.
References

Institute for Advanced Study,
Princeton, New Jersey

Haverford College,
Haverford, Pennsylvania