Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Characterizations of tame surfaces in $ E\sp{3}$


Author: C. E. Burgess
Journal: Trans. Amer. Math. Soc. 114 (1965), 80-97
MSC: Primary 54.78
DOI: https://doi.org/10.1090/S0002-9947-1965-0176456-2
MathSciNet review: 0176456
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. W. Alexander, An example of a simply connected surface bounding a region which is not simply connected, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 8-10.
  • [2] L. Antoine, Sur l'homéomorphie de deux figures et leurs voisinages, J. Math. Pures Appl. 4 (1921), 221-325.
  • [3] R. H. Bing, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145-158. MR 0061377 (15:816d)
  • [4] -, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 456-483. MR 0087090 (19:300f)
  • [5] -, An alternative proof that 3-manifolds can be triangulated, Ann. of Math. (2) 69 (1959), 37-65. MR 0100841 (20:7269)
  • [6] -, Conditions under which a surface in $ {E^3}$ is tame, Fund. Math. 47 (1959), 105-139. MR 0107229 (21:5954)
  • [7] -, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294-305. MR 0131265 (24:A1117)
  • [8] -, A wild surface each of whose arcs is tame, Duke Math. J. 28 (1961), 1-16. MR 0123302 (23:A630)
  • [9] -, Each disk in $ {E^3}$ contains a tame arc, Amer. J. Math. 84 (1962), 583-590. MR 0146811 (26:4331)
  • [10] -, Approximating surfaces from the side, Ann. of Math. (2) 77 (1963), 145-192. MR 0150744 (27:731)
  • [11] -, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33-45. MR 0160194 (28:3408)
  • [12] -, Embedding surfaces in 3-manifolds, Proc. Internat. Congr. Mathematicians (Stockholm, 1962), pp. 457-458, 2.11-2.12, Inst. Mittag-Leffler, Djursholm, 1963. MR 0176455 (31:727)
  • [13] Morton Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331-341. MR 0133812 (24:A3637)
  • [14] P. H. Doyle and J. G. Hocking, Some results on tame disks and spheres in $ {E^3}$, Proc. Amer. Math. Soc. 11 (1960), 832-836. MR 0126839 (23:A4133)
  • [15] R. Fox and E. Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979-990. MR 0027512 (10:317g)
  • [16] David S. Gillman, Side approximation, missing an arc, Amer. J. Math. 85 (1963), 459-476. MR 0160193 (28:3407)
  • [17] H. C. Griffith, A characterization of tame surfaces in three space, Ann. of Math. (2) 69 (1959), 291-308. MR 0105661 (21:4399b)
  • [18] O. G. Harrold, Jr., Locally peripherally unknotted surfaces in $ {E^3}$, Ann. of Math. (2) 69 (1959), 276-290. MR 0105660 (21:4399a)
  • [19] John Hempel, A surface in $ {S^3}$ is tame if it can be deformed into each complementary domain, Trans. Amer. Math. Soc. 111 (1964), 273-287. MR 0160195 (28:3409)
  • [20] Witold Hurewicz and Henry Wallman, Dimension theory, Princeton Univ. Press, Princeton, N. J., 1948. MR 0006493 (3:312b)
  • [21] E. E. Moise, Affine structures in 3-manifolds. VIII. Invariance of the knot-types; local tame imbedding, Ann. of Math. (2) 59 (1954), 159-170. MR 0061822 (15:889g)
  • [22] C. D. Papakyriakopoulos, On Dehn's Lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1-26. MR 0090053 (19:761a)
  • [23] G. T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320-324. MR 0099638 (20:6077)
  • [24] R. L. Wilder, Topology of manifolds, Amer. Math. Soc. Colloq. Publ. Vol. 32, Amer. Math. Soc., Providence, R. I., 1949. MR 0029491 (10:614c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.78

Retrieve articles in all journals with MSC: 54.78


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1965-0176456-2
Article copyright: © Copyright 1965 American Mathematical Society

American Mathematical Society