Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Asymptotic behavior of solutions of nonlinear differential equations


Author: Richard K. Miller
Journal: Trans. Amer. Math. Soc. 115 (1965), 400-416
MSC: Primary 34.50
DOI: https://doi.org/10.1090/S0002-9947-1965-0199502-9
MathSciNet review: 0199502
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] L. Amerio, Soluzioni quasi-periodiche, o limitate, di sistemi differenziali non lineari quasi-periodici, o limitati, Ann. Mat. Pura Appl. 39 (1955), 97-119. MR 0079687 (18:128b)
  • [2] E. A. Barbašin and N. N. Krasovskiĭ, On stability of motion in the large, Dokl. Akad. Nauk. SSSR 86 (1952), 453-456. (Russian) MR 0052616 (14:646f)
  • [3] A. S. Besicovitch, Almost periodic functions, Dover, New York, 1954. MR 0068029 (16:817a)
  • [4] E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. MR 0069338 (16:1022b)
  • [5] N. Dunford and J. T. Schwartz, Linear operators, Part I, General theory, Pure and Applied Mathematics, Vol. 7, Interscience, New York, 1958. MR 1009162 (90g:47001a)
  • [6] N. N. Krasovskiĭ, Stability of motion, Stanford Univ. Press, Palo Alto, Calif., 1963. MR 0147744 (26:5258)
  • [7] J. P. LaSalle and S. Lefschetz, Stability by Liapunov's direct method with applications, Academic Press, New York, 1961.
  • [8] J. P. LaSalle, Asymptotic stability criterion, Proc. Sympos. Appl. Math. Vol. 13, pp. 299-307, Amer. Math. Soc., Providence, R. I., 1962. MR 0136842 (25:303)
  • [9] J. J. Levin and J. A. Nohel, Global asymptotic stability for nonlinear systems of differential equations and applications to reactor dynamics, Arch. Rational Mech. Anal. 5 (1960), 194-211. MR 0119524 (22:10285)
  • [10] T. Yoshizawa, Asymptotic behavior of solutions of a system of differential equations, Contributions to Differential Equations 1 (1963), 371-387. MR 0148991 (26:6487)
  • [11] -, Asymptotic behavior of a perturbed system, pp. 80-85, International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics, Academic Press, New York, 1963.
  • [12] J. J. Levin, On the global asympotic behavior of nonlinear systems of differential equations, Arch. Rational Mech. Anal. 6 (1960), 65-74. MR 0119525 (22:10286)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34.50

Retrieve articles in all journals with MSC: 34.50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1965-0199502-9
Article copyright: © Copyright 1965 American Mathematical Society

American Mathematical Society