The convergence of sequences of rational functions of best approximation. II

Author:
J. L. Walsh

Journal:
Trans. Amer. Math. Soc. **116** (1965), 227-237

MSC:
Primary 41.17

MathSciNet review:
0188684

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**J. L. Walsh,*The convergence of sequences of rational functions of best approximation*, Math. Ann.**155**(1964), 252–264. MR**0164185****[2]**-,*Interpolation and approximation*, Amer. Math. Soc. Colloq. Publ., Vol. 20 Amer. Math. Soc., Providence, R. I., 1935.**[3]**-,*The analogue for maximally convergent polynomials of Jentzsch's theorem*, Duke Math. J.**26**(1959), 605-616.**[4]**J. L. Walsh,*Overconvergence, degree of convergence, and zeros of sequences of analytic functions*, Duke Math. J.**13**(1946), 195–234. MR**0017797****[5]**J. L. Walsh,*On the overconvergence of certain sequences of rational functions of best approximation*, Acta Math.**57**(1931), no. 1, 411–435. MR**1555339**, 10.1007/BF02403051**[6]**V. Erohin,*On the best approximation of analytic functions by rational fractions with free poles*, Dokl. Akad. Nauk SSSR**128**(1959), 29–32 (Russian). MR**0108596**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
41.17

Retrieve articles in all journals with MSC: 41.17

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1965-0188684-0

Article copyright:
© Copyright 1965
American Mathematical Society