Improving the side approximation theorem

Author:
R. H. Bing

Journal:
Trans. Amer. Math. Soc. **116** (1965), 511-525

MSC:
Primary 54.78

MathSciNet review:
0192479

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**R. H. Bing,*Locally tame sets are tame*, Ann. of Math. (2)**59**(1954), 145–158. MR**0061377****[2]**R. H. Bing,*Approximating surfaces with polyhedral ones*, Ann. of Math. (2)**65**(1957), 465–483. MR**0087090****[3]**R. H. Bing,*An alternative proof that 3-manifolds can be triangulated*, Ann. of Math. (2)**69**(1959), 37–65. MR**0100841****[4]**R. H. Bing,*A surface is tame if its complement is 1-ULC*, Trans. Amer. Math. Soc.**101**(1961), 294–305. MR**0131265**, 10.1090/S0002-9947-1961-0131265-1**[5]**R. H. Bing,*Approximating surfaces from the side*, Ann. of Math. (2)**77**(1963), 145–192. MR**0150744****[6]**R. H. Bing,*Each disk in 𝐸³ contains a tame arc*, Amer. J. Math.**84**(1962), 583–590. MR**0146811****[7]**R. H. Bing,*Pushing a 2-sphere into its complement*, Michigan Math. J.**11**(1964), 33–45. MR**0160194****[8]**Morton Brown,*Locally flat imbeddings of topological manifolds*, Ann. of Math. (2)**75**(1962), 331–341. MR**0133812****[9]**Witold Hurewicz and Henry Wallman,*Dimension Theory*, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. MR**0006493****[10]**Edwin E. Moise,*Affine structures in 3-manifolds. IV. Piecewise linear approximations of homeomorphisms*, Ann. of Math. (2)**55**(1952), 215–222. MR**0046644****[11]**Edwin E. Moise,*Affine structures in 3-manifolds. VIII. Invariance of the knot-types; local tame imbedding*, Ann. of Math. (2)**59**(1954), 159–170. MR**0061822****[12]**R. L. Moore,*Concerning upper semi-continuous collections of continua*, Trans. Amer. Math. Soc.**27**(1925), no. 4, 416–428. MR**1501320**, 10.1090/S0002-9947-1925-1501320-8

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54.78

Retrieve articles in all journals with MSC: 54.78

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1965-0192479-1

Article copyright:
© Copyright 1965
American Mathematical Society