On semicontinuous fuctions and Baire functions
Author:
Robert E. Zink
Journal:
Trans. Amer. Math. Soc. 117 (1965), 1-9
MSC:
Primary 28.20
DOI:
https://doi.org/10.1090/S0002-9947-1965-0169974-4
MathSciNet review:
0169974
Full-text PDF
References | Similar Articles | Additional Information
- [1] H. Blumberg, The measurable boundaries of an arbitrary function, Acta Math. 65 (1935), 263-282. MR 1555405
- [2] A. Denjoy, Sur les fonctions dérivées sommable, Bull. Soc. Math. France 43 (1916), 161-248.
- [3] C. Goffman, C. J. Neugebauer and T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497-506. MR 0137805 (25:1254)
- [4] C. Goffman and D. Waterman, Approximately continuous transformations, Proc. Amer. Math. Soc. 67 (1961), 116-121. MR 0120327 (22:11082)
- [5] O. Haupt and C. Pauc, La topologie approximative de Denjoy envisagée comme vraie topologie, C. R. Acad. Sci. Paris 234 (1952), 390-392. MR 0046408 (13:728i)
- [6] K. Nagami, Baire sets, Borel sets and some typical semi-continuous functions, Nagoya Math. J. 7 (1954), 85-93. MR 0069862 (16:1092a)
- [7] R. E. Zink, A classification of measure spaces, Colloq. Math. (to appear). MR 0200403 (34:298)
Retrieve articles in Transactions of the American Mathematical Society with MSC: 28.20
Retrieve articles in all journals with MSC: 28.20
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1965-0169974-4
Article copyright:
© Copyright 1965
American Mathematical Society