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1. Introduction. Let {£,,} be a sequence of independent random variables

having the same distribution function (d.f.) F(x). We will consider the maximum

term, i.e., the random variable

i/„ = max(^,,í2,-..,¿;„),

whose d.f. F„(x) is

Fn(x) = P{tln<x} = Fn(x).

Much work has been done on the study of the limit distributions of the maximum

term. The first results in this respect were obtained by M. Fréchet [1]. The most

complete results, which may be said to summarize in a sense this series of in-

vestigations were obtained by B. V. Gnedenko [2]. He showed that the limit

distributions for F"(a„x + £>„), where a„ > 0 and b„ are suitably chosen real

constants, are confined to the improper type and to the distributions of the

following three forms:

A(x)  = exp(-e  *),

<U> *"«   =    {e°xp(-x-")

if x g 0,

if x > 0,

yM  -    i«p(-|x|«)        ifx = 0,

A }  '     \l ifx>0,

where a is a positive constant. Gnedenko also found the domain of attraction

of the d.fs. 0(x)from(l.l), i.e. the class of d.fs. F(x)for which constants a„ and b„

may be found such that

limF"(a„x + bn) = $(x).
»-♦00

The problems involved in the theory of the limit distributions for the maximum

term parallel those encountered in the theory of limit distributions for sums of
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independent random variables. In the latter theory the following three classes

of d.fs. play the central part [3] :

(a) The class of d.fs. which may be represented as limits of sums of independent

and identically distributed summands. This class coincides with that of the stable

laws.

(b) The class L of d.fs. which may be represented as limits of sums of indepen-

dent and "infinitesimal" summands.

(c) The class of d.fs. which may be represented as limits of subsequences of

sums of independent and identically distributed summands. This class coincides

with that of the infinitely divisible distributions.

Thus, in the theory of the maximum term, the class of d.fs. (1.1) is seen to be

an analogue of the set of stable laws.

The analogue of the class L was studied in [4]-[8]. Finally, it has been shown

[9] that the analogue of the class of infinitely divisible distributions is the set of all

distribution functions. In other words, for any d.f. <P(x) there exists a d.f. F(x) and

integers nk and real numbers ak and bk such that

(1.2) lim F"k(akx + bk) = <D(x).
ft-» GO

In connection with the last result, it would seem natural to restrict the problem

by imposing certain conditions on the subsequence {nk} appearing in (1.2).

The d.f. <D(x) will be called a partial limit of rank r, or r-limit, if there

exists a d.f. F(x), a subsequence of the positive integers, {nk}, with

(1.3) lim(njnt + i) = r
ft-» 00

and constants ak and bk such that the d.f. of the random variable (n„k — bk)jak

converges, as fe-* co, to <P(x), i.e. (1.2).

In this case F(x) is said to be partially attracted with rank r to the d.f. <D(x),

or F(x) belongs to its r-attraction domain.

It is the purpose of this paper to study the r-limit distributions and their r-

attraction domain (r > 0).

Remark 1.1. The convergence of d.fs. is meant to be in the "weak sense,"i.e.,

the functions converge at every continuity point of the limit function. Similarly,

equality between two d.fs. (and even any two functions of bounded variation)

will always mean that they coincide at their points of continuity.

In our considerations we shall often use the following two theorems :

Khintchine's Theorem ([10, Theorem 43] or [3, §10, Theorem 1]). If the

sequence {Fn(x)} of d.fs. converges as n —> co to a proper d.f. F(x), then for

any choice of the constants a„ > 0 and b„ the sequence {Fn(anx + bn)} can

converge to a proper distribution only if this is of the same type as F(x).

However, for every sequence {P„(x)} of d.fs., there exist constants an > 0

and b„ such that {F„(anx + A„)} converges to the improper distribution.
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Gnedenko's Theorem [3, §10, Theorem 2]. For a sequence of d.fs. {F„(x)}the

relations

Fn(anx + bn) -» F(x),

Fn(*nX + ßn) - Fix)

as n-*co, where a„, an, bn, ßn are real constants and F(x) is a proper d.f, are

satisfied simultaneously if and only if

<*>„-» 1>       (ßn-b„)lan-+0

as n-* oo.

2. Characterization of /--limit distributions. The characterization of /--limit

distributions is given in [9]. The main results are formulated in Theorems

2.1-2.3.

Theorem 2.1. (a) Every distribution is a 0-limit.

(b) The distribution <5(x) is an r-limit (0 < r < 1) if and only if<b(x) and Or(x)

are of the same type; in other words, there exist constants a = a(r) and b = b(r)

such that for every x

(2.1) í>r(x) = $(ax + b).

(c) The distribution isa 1-limit if and only if it is an r-limit for every 0<r<l.

The class of 1-limit distributions coincides with the class of limit distributions

(1.1) for the maximum term.

Let R(Q>) denote the set of ranks r for which O(x) is an r-limit. This set has a

maximum r0 = r0(Q>). Then umber r0 will be called the maximal rank of partial

attraction of the distribution 5>(x).

Theorem 2.2. (a) 0 < r0 < 1 if and only if

(2.2) R(®) = {r : r = r?,  m = 1,2,-,oo}.

(b) r0 = 1 if and only ifR(Q?) contains two numbers such that the ratio of their

logarithms is irrational.

The "left end" x0 = x0(<£>) and the "right end" y0 = y0(O) of the distribution

<p(x) are defined by

(2.3) x0 = Inf {x : <5(x) > 0},       y0 = sup {x : <5(x) < 1}.

It can be shown that if a proper d.f. satisfies the condition (2.1) with /-> 0,

then one, and only one, of the following cases must occur:
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(1) a = 1, x0 = - co,       y0 = + oo,

(2.4) (2) a > 1, x0 > - oo,       y0 = + co,

(3) a < 1, x0 = — co,        v0 < + co.

Hence the class of distributions with partial attraction domain of positive

rank is divided into three subclasses—to be denoted by A*, «Í* and *P*, according

to the cases (1), (2) and (3), respectively.

If 4>(x)eO* (O(x) e *¥*), then the distribution <50(x) = 0(x + x0)

(<P0(x) = í>(x + y0)) will satisfy a simpler functional relation

(2.5) <D'0(x) = cj>0iax).

The distribution O(x) is continuous at x0 iy0), hence the function i>(ex + x0)

(q>( — e ~x + y0)) is a distribution function.

Theorem 2.3. <l>(x)e<l>* i^(x)ex¥*) if and only if

<P(e* + x0) e A* (cD( - e~x + y0) e A*).

It is easy to find a canonical representation of these distributions. Using the last

theorem it is enough to study the class A*.

Theorem 2.4. The function <P(x) is a d.f. of the class A* if and only if for

every x

(2.6) 0 < <£(x) < 1

and its iterated logarithm is represented by

(2.7) lg|lg<I>(x)| = <Kx)-ax,

where a is a positive constant and cb(x) is a bounded periodic (in the sense of

Remark 1.1) function satisfying

(2.8) cb(x2) - <t>ixy) ̂ a(x2 - xy)

for every Xy < x2.

If the d.f. <D(x) is represented in this form and A0 is the period of c6(x), iAen the

maximal rank rQ o/0(x) is given by

(2.9) r0 = exp(-aA0)

and we have for every x

(2.10) Oro(x) = cp(x + A0).

In particular, i/c>(x) is a constant, then í>(x) belongs to the type A(x) (1.1) and

(2.10) holds for every r and b satisfying (2.9).

Proof. Let 0(x)eA* and let r0 < 1. From equalities (2.1) and (2.4) follow

inequalities (2.6) and there exists a A0 > 0 such that (2.10) becomes an identity.



1965] ON A CERTAIN CLASS OF LIMIT DISTRIBUTIONS 209

The function f(x) = lg | lg $(x) | is defined because of (2.6) and satisfies the

conditions

(1) /(-co)= + co,/( + oo) = -oo,

(2.11) (2) f(x) nonincreasing function,

(3)             /(x+£>o)-/(x) = lgr0.

Let

(2.12) a = ( - lgr0)/b0,      <f>(x) = ax +/(x),

then we obtain (2.7). From (2.11) it follows that <p(x + b0) — <p(x) = 0. It is easy

to see that b0 is the minimal period of <p(x) : If for some integer n > 1

4>(x + b0jn) - <p(x) = 0, then by (2.12) we get for every x

O'0""(x) = d>(x + b0ln),

which contradicts the definition of r0.

The necessity of (2.8) follows from the monotonicity of/(x). The proof of the

sufficiency of these conditions is analogous. Equalities (2.9) and (2.10) are evident.

Let us remark that since every integral multiple of the period b0 is again a period

of 4>(x) and by (2.9) r"0 = exp( — anb0) for every integer n, therefore (2.10) implies

(2.13) Oro"(x) = 0(x + nb0)

for every x and integer n.

Corollary 2.1. A differentiable d.f. <S>(x) belongs to A* if and only if the

derivative of lg | lg 3>(x) | is periodic.

In order to avoid condition (2.8) let us state the following

Corollary 2.2. The function <I>(x) is a d.f. of the class A* if and only if it

satisfies (2.6) and for every x

lg |lgcp(x) | = g(x - b[x/£>]) + [x/£>]lg/-

([x] is the integral part of x), where 0 < r < 1 and b > 0 are constants and

g(x) is nonincreasing and bounded in the interval [0,b) and satisfies

g(b-0)-g(0+)^lgr.

As an immediate consequence of Theorems 2.3 and 2.4 we obtain

Theorem 2.5. The distribution tp(x) belongs to A*, 4>*, *F* if and only if

it has the form
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O(x)  = {A(<xx)}P(*\

<P(x + x0) = {3>a(x)}P(lex) (x > 0),

®(x+y0)= {V/.x)fK"VMi      (x<0),

respectively, where a is a positive constant, P(x) a positive periodic function

of bounded variation, the numbers x0, y0 are the "ends" of the distribution

<5(x) and A(x), <Da(x), ̂ (x) are distributions (1.1).

3. A generalization of the problem. It might seem that the definition of

r-limit distributions (r > 0) is artificial and that it would be more natural to

replace (1.3) by the weaker assumption

(3.1) lim inf (nk/nk + y) > 0.
([-►00

We shall show that this extends neither the class of r-limit distributions nor their

domain of partial attraction.

Lemma 3.1. Let 0(x) be a proper distribution satisfying (1.2), where (3.1)

holds. If for some subsequence k(s) the limit

(3-2) lim(nk(Jnk(s) + 1) = r
s-» oo

exists, where 0 < r ^ 1, then the following limits exist

lim (a4{s)+i/at(s)) = a,        lim ((A4{s) + 1 - A»(s))/at(5)) = A
s-»oo s~* oo

and (2.1) holds.

Proof. We have

lim F"k^iak(s)x + bk(s)) = <D(x) and

(3.3)

lim F"*<*>+' iaku) + yx + bk(s) + 1) = 0(x).
s -*oo

Hence, because of (3.2), also

lim   Fnk^(ak(s) + yx +bk(s) + x) = &(x).
s-* oo

In view of Khintchine's theorem this relation together with (3.3) implies the

necessity of (2.1). The last equality can be put in the form

lim F**<"Xami.1x + A,I(S)+1) = «D(ax + A).
5-»00

If we substitute (x - A)/a for x in the last equality, the proof then follows by (3.3)

and Gnedenko's theorem.
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Theorem 3.1. If conditions(1.2) and(3.1) hold, then:

(a) The distribution <E>(x) has a partial domain of attraction of positive rank.

(b) The d.f. F(x) is partially attracted to i>(x) with every rank r in R(Q>).

Proof. Let

(3.4) liminf(nk¡nk+x) = r (0 < r < 1).
*->00

(a) According to Khintchine's theorem, every improper distribution is an

r-limit for every 0 :g r zg 1, hence the first part of the theorem follows from

Lemma 3.1.

(b) Let us consider two cases.

I. Let 0 < r0 < 1. By Lemma 3.1, Theorem 2.2 and equality (3.4) we conclude

that every partial limit of the ratio njnk+1 which is smaller than 1 has to have

the form (2.2). Therefore there exists an integer n such that r=r"0 and the set of

partial limits of the sequence {njnk+x} does not include any other number except

(3.5) l,r0,r20,-,rn0 = r.

Let us first show that there is a subsequence {nk(s)} with

(3.6) rS = liminf(/i4(s)/nt(s+1))^limsup(/ik(s)//i(t(s+1))gr0.
s-*co s-*oo

Using (3.4) we can assume that for every k

(3.7) (nklnk+x)^rl+x<\

Let q,

(3.8) rl+1/4<q<l

be given. Take nHX) = nx, nt(s+ X) = nm + p, where

p = min {m : nkU) = q ■ nk,s) + m}.

Then from (3.7) and (3.8) it follows that

Q = (Mfc(s)/n*:(s +1)) — (nk(s)lnk(S +1)_ i) • (nkts + x>_ x¡nkls+x>)

z>   n ■ rn + il* -, »»+1/2> q   ro      > r o

Condition (1.2) is satisfied also for the subsequence {zi^)}, hence the partial

limits of the ratio nHs)/nk(s+X) are again of the form (2.2). On the other hand it is

clear that

lim inf (nm/nk(s+X)) = lim sup (nk/nk + x).
S->00 fc->00

This together with (3.5) yields (3.6). In order to simplify notation we may assume

that the original sequence {nk} satisfies, for every k, the inequalities
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(3.9) r0+1/2<(n,/nt + 1)<^

Consider the intervals

Ap = [rg+1/2,rg-1/2), p=l,2,-,n.

From (3.9) we have for every integer fe a p(fe) such that

(3.10) inklnk+y)eAp(k).

Let the integers nk s be introduced between nk and nk+1, where

(3.11) «m = [»*/-4]    (s = l,2,-,p(fc)-l).

By assumption there exist a0 and A0 such that for every x

(3.12) Oro(x) = O(a0x + A0).

Let us also supplement the sequences {ak} and {bk}, by adding the numbers

ak.s=ak-aô,    bkyS = bk + A0(l +a0 + •■■ +as0~1)ak,

(3-13) (s = l,2,...,p(fe)-l).

The supplemented sequences will be denoted by {ñk}, {äk} and {bk}, respectively.

Let us prove that

(3.14) lim F\âkx + bk) = O(x).
*-»oo

It is enough to show that if for a certain subsequence fc(r)

(3.15) lim FBk(t,(dft(,)X + bklt)) =/(x),
»-»CO

then

(3.16) f(x) = <D(x).

Using (3.11) and (3.13) we can represent ñk,t), äk(t) and bk,t) in the form

"*(0 = Lnk(t)lr   J»       ó*(o= ao at(0'

(3.17) bk(tx = bk(t) + A0(l +a0 + ■»■ + as0(,) ~l)am,

(ß*m = »»ko if s(t) = 0),

where 0 ^ s(i) ̂  p(fe) - 1 g « - 1.
Without restricting the generality of our argument we may assume that s(i) = m,

where m is a constant non-negative integer. For m = 0 the sequence (3.15) is a

subsequence of (1.2) and equality (3.16) is certainly satisfied. Let m ^ 1; then,

by (3.17), the equality (3.15) can be restated as
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lim [F(am(aZx + b0(l + a0 + - + a^1)) + ¿W]^'"""1 =/(*),
/-♦OO

hence, from (1.2), we get

f'Z(x) = ®(atx + b0(l + a0 + - + A?"1 ))•

By iterating relation (3.12) m times we get

*'?(*) = Ofa^x + b0(l + a0 + - + a^1)),

which is valid for every integer m. From this follows (3.16) and the proof of

(3.14). Let us now prove that

(3.18) lim(ñk/ñk+x) = r0.
t-»oo

Let ñk and «fc + 1 be two successive terms in the sequence. We have the following

cases :

(!)   («*/«*+i) = (nkJnktS+x), where 0 ^ s = p(k) - 1. Then

r0(nk - l)/n* < »-„(n* - r^)/ufc < nkJnktS+1

< r0nk¡(nk - r0 *) < r0nk¡(nk - 1).

(2) (ñJñk+i) = (»*,**)-i/»i+i)- Then

(»*/»*+iK-*** "(l/»k+i) <(»*.,*«-1/«*+i)á(»*K+tVJ"^-

But by (3.10), r0p(t) + 1/2 zg (nJnk+0 < r^k)'112 , therefore

(3.20) r0/2 - (r0/»4+1) < (nk_p(k)-x¡nk + x) < r¿/2.

(3) If both ñk and ñk+x belong to the original sequence nk, then

(3.21) rl'2^(ñk/ñk + x)<rl0/2,

since in this case p(k) = 1.

From (3.19), (3.20) and (3.21) it follows that

ri12 <: lim inf(ñklñk+x) zg lim sup(ñjw*+1) =: ro/2.

In view of (3.14) the partial limits of the ratio ñjñk+x are also of the form

(3.5). Thus the last inequalities imply (3.18).

Let m be any integer and suppose n'k = nkm + c, wherec is a non-negative integer.

From (3.18) it follows that limft-,00(X/rik+1) = r", and by Theorem 2.2 we get

the proof of the present theorem for the first case.

Remark 3.1. We have also proved, incidentally, that if (1.2) and (3.1) hold then

there exists a sequence of powers {n'k} such that (1.2) is satisfied and
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lim inf ink¡nk +y) = lim(nk!n'k+1) = r.
fc-*co ft-»co

This does not imply that {n'k} is a subsequence of {nk}.

II. Let r0 = 1. By Khintchine's theorem every distribution F(x) belongs to the

domain of attraction of the improper type. Hence we may assume that <P(x) is one

of the distributions (1.1). Denote

■**,« = nk(nk+y/nkYlk,       ak<s = ak(ak + ylak)s,k,

bk,s =  bk+(bk + 1-bk)s/k,   s = 0,l,-.-,fe- 1;   k=l,2,---.

By (3.1) we get lim supk^œ(nk + l/nk) < co, hence

(3-22) lim(n1M/rtiM+1) = l
ft-» 00

(where nk¡k = nfc + 10). Since nk¡s< nkiS+l < nk + ifi and lim^oon*,^ oo, every

integer n (n 7î ny) can be (uniquely) represented as n = nks + m, where

0 ;£ m — m(n) < nfc>s + 1 — nks and lim,._ „(m/n^) = 0 by (3.22). Suppose

an — "ft,»» A„ = bktS, then we shall prove that

(3.23) lim F\anx + A„) = <D(x).
H-+00

Indeed, suppose that for a certain subsequence n(i)

(3.24) limF"(I)(an(t)x + An(i))=/(x),
f-»00

where n(t) = nt(()(nt(1) + 1/nt(t))s(,),*(t) + m(i).

Using Lemma 3.1 and condition (1.2) the following limits may be assumed

to exist:

Iim (am+1lak(t)) = a,       lim((AM0 + 1 - Afc(())/at(r)) = A
r-»oo t-»oo

and

lim(nt(r)/nMi) + 1) = r (r > 0).
r-»co

Now, since 0 ^ s/k < 1, we may assume the existence of lim(_œ(s(t)//c(0) = c,

where Ozicz^l. Hence

a»(0 = °<Ht)(ac + o(l)), bn(t) = bk(t) = ak(t)(bc + o(l)),

"(0 = nk(t)(r~c + o(l)),        as r->oo.

Thus (3.24) takes the form

lim{F(at(t)(acx + Ac + a((x)) + bH^}"m{r"+ft) = f(x),
t-»00

where a,(x) = o(l), ß, = o(l) as t -» 00. Combined with (1.2) this yields
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fc(x) = <t>(acx + be).

Equality (2.1) is satisfied by Lemma 3.1. It is easy to see that if i>(x) is one of the

distributions (1.1) then, together with (2.1), it also satisfies

OrC(x) = <5(acx + be)

for every real c. Thus we get/(x) = O(x), which proves (3.23). Clearly, for every

0 = r < 1 it is possible to extract from (3.23) a subsequence which satisfies con-

dition (1.3). This proves the proposition in the second case.

Remark 3.2. Let 3>(x) be an arbitrary distribution. To each d.f. F(x) we let

correspond the set N(<1>,F) of all increasing sequences of positive integers {nk}

which satisfy (1.3) and for which there exist constants ak and bk such that (1.2)

holds. Put

E(0)= \jNi9,P),
F

where F runs through the class of all d.fs.

Now let Ñ(<5>,F) be the set of all {nk}, for which (1.2) is satisfiable, and let

£(0) = \JÑ(<¡>,F).
F

Evidently N cz Ñ. The Theorem 3.1 can be rephrased as follows :

\r:r = lim inf (njnk+ x), {nk} e Ä(<D,F)|
\ k->co )

= {r:r= \im(n Jnk + X), {nk} e N(<D,F))
\ fc-»oo I

for any two d.fs. <X>(x) and F(x). In particular, if <5(x) is an r-limit distribution

(r>0) and the d.f. F(x) is partially attracted to <I>(x) with a positive rank,then also

\r:r = lim inf (nk¡nk+x), {nk} e£($)
I *->0O j

= \r:r = lim(nklnk + x), {nk} eN(4>,F)).
1 k->oo )

In [9] it was noted that each r-limit distribution (r > 0) belongs to its own

domain of r-attraction. Denoting by N(<t>,(&) the set of all sequences {nk} for

which the limit (1.3) exists and

(3.25) lim <&"k(akx + bk) = 4>(x)
*-»oo

is satisfiable, we obtain the following result:

\r:r = lim inf(nk¡nk+x), {nk} eE(Q>)\
\ fc-*oo )

=   r:r=lim(njnt + 1), {nt} e N(<£, <ï>) j

for every r-limit distribution <t(x) (r > 0).
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Thus conditions (1.2) and (3.1) and conditions (3.25) and (1.3), where r > 0,

determine the same set of limit distributions.

The maximal rank of partial attraction of the distribution 3>(x) was defined as

r0(O)= suplim(njnt+1).
£(05) ft-»co

(In virtue of Theorem 2.1a, E(O) is not empty.) It follows from our considera-

tions that this definition may be replaced by

r0(<I>) = sup   lim inf (nfcK + 1)
£(«)       ft-»co

and also by

rO        if N(3>, <D) is empty,

ro(®) =   s sup  lim(n4/n4+1) otherwise.
MVÍ«,«) ft-»co

The set N(0,«J>) may actually be empty. In [9] it was shown that the distri-

bution

v '       \i- l/lg(x +e)        if x>0

cannot be partially attracted to any proper distribution : for every 4>(x) the set

Ñ(Q>,H) is empty and therefore so is N(H,H). (This example was given by A.

Khintchine [10, §15] in connection with an analogous problem concerning sums

of random independent variables.)

It seems plausible that the condition "N(cp, <I>) nonempty" is not only necessary

but also sufficient in order that <D(x) be an r-limit with r > 0.

4. A comparison between r-attraction domains for r > 0 and r = 0. The notion

of distribution type, which is essential in the theory of limit distributions for

sums of independent random variables, has to be extended for our purposes.

Definition 4.1. The distributions 4>(x) and G(x) belong to the same distribution

"family," if for some real constants a > 0, b and c> 0 and every x

(4.1) G(x) = Oc(ax + A).

It is easy to see that together with every distribution <P(x) not only all distribu-

tions of the same type but also every distribution of the same family is a limit for

the maximum term, normalized in an appropriate way. This is true also for the

domain of attraction.

The family is called proper if it contains a proper d.f.

Theorem 4.1. A d.f. can be partially attracted with a positive rank to at most

one proper family.
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Proof. Assume that (1.2) and (1.3) hold and also

(4.2) lim FVfc(a*x + ßk) = G(x),
fc-»oo

where $(x) and G(x) are proper distributions. To every integer k (such that

vk _ nx) there corresponds an integer m = m(k) such that

nmú vk<nm + x.

By (1.3) the ratio vk/nm is bounded. Let (4.2) be written in the form

lim {Fnm(akx + ßk)Yk""" = G(x).
fc-*00

Let us extract a subsequence ks so that the following limits exist:

lim {F(akx + ft,)}""""»  and     lim (vjnm,ks)).
S-*<X> 3-*CO

Then (4.1) follows from Khintchine's theorem and condition (1.2).

Theorem 3.1 implies that for a given distribution <£(x) it is meaningful to speak

about two domains of partial attraction only: those with "zero density" and

those with "positive density."

Theorem 4.2. The O-attraction domain of a distribution is effectively larger

than its attraction domain of positive rank.

Proof. Let us first suppose that <D(x)e A*. By Theorem 2.4,

<D(x) = exp(-e*(*)_0[JC),

where a > 0 is a constant and <p(x) is a bounded periodic function satisfying

condition (2.8). Without restricting the generality of the argument we may assume

that the period b0 of <p(x) is 1.

Let g(x) be another bounded and periodic function with the same period 1,

which also satisfies (2.8). Then the distribution

G(x) = exp(-egM-"x)

too, belongs to A*. We may choose g(x) so that the distributions O(x) and G(x)

will not be of the same family and so that they will have the same value and the

same one-sided limits at the points 0 and 1. Thus the function

(4.3) Fix)

' 0 if x = 0,

cTi(x)       if 2n(n — 1) < x zg 2«2,

. G(x)       if 2n2 < x zg 2n(n + 1)

(« = 1,2,...)
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is a d.f. Let r0 = exp( — a). Because of (2.9), 3>(x) and G(x) satisfy condition

(2.13), where £>0 = 1. Let

(4.4) bk = 2fc2 -k,        nk = [rô1*].

Then

(4.5) lim Fnk(x + bk) = 0>(x).

Indeed, let x be any number. If [J x |] < k, then 2k(k — 1) < x + bk<2k2, hence

by (4.3), from some k on F(x + bk) = 5>(x + bk). But bk is an integer, hence by

(2.13), from some k on we will have

F(x + bk) = <S>r>(x),

hence

(4.6) F"k(x + bk) = {<S>(x)}"kr°k .

From the definition (4.4) of nk it follows that

(röbk-l)rb0k<nkrbok^l,

and since 0<ro<l, limk^o0(nkrb0k) = 1. This and equality (4.6) prove (4.5).

Thus we have proved that F(x) belongs to the domain of partial attraction of

O(x). If we assume

(4.7) bk = 2k2+k, nk=[röbkl

then a similar argument shows that F(x) is partially attracted also to the law

G(x). But G(x) was constructed so that it does not belong to the same family

as O(x) and by the previous theorem the d.f. F(x) cannot be attracted to <t>(x) with

positive rank.

In order to avoid using the canonical representation of distributions in $* or

*P*, we use the fact that the d.f. F(x) constructed above is partially attracted to

the distribution 3>(x) in such a way that the constants ak in (1.2) are equal to 1.

Also, for every x,

(4.8) Fix) < 1.

Now let T(x) be any distribution in i>*. Let us assume

(4.9) 3>(x) = T(ex + x0),

where x0 is the left end of T(x), which is defined by (2.3). By Theorem 2.3,

4>(x) e A*. Let F(x), nk and bk be defined by (4.3) and (4.4). Take

Í0 if x<0,
(4-10) í(X)=Ulgx)        ifx^O.
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By (4.8), t(x) is a d.f. For every x > 0 we get from (4.5)

(4.11) lim F"k(lg x + A,) = 0>(lgx).
ft-» 00

Let ak = exn(bk), then from (4.9), (4.10) and (4.11) it follows that for every

x>0

(4.12) lim fk(akx) - T(x + x0).
ft-» 00

On the other hand, for x _ 0

t(akx) = T(x + x0) = 0,

thus (4.12) is satisfied for every x, or t(x) is partially attracted to T(x). Let us take

the sequences (4.7), a similar argument proves that

lim fk(akx) = W(x + x0),
ft-» CO

where G(x) = Wie* + x0). It is easy to see that if <P(x) and G(x) are not of the

same family neither are T(x) and W(x), which proves our statement for distribu-

tions in the class <5*. The proof for distributions in *P* is analogous. Here we take

0(x)  =  T(-e-x+y0),     ak = exp(-bk),

fF(-lg|x|)       ifx<0,

(.1 ifx = 0.

Example 4.1. Let

f exp ( - e~x) if x = 0 and if 4n(n - l)n < x ^ 4n2%,

F(x) " \ exp(-e~x+cosx~i)       if 4n2n< x ^ 4n(n + l)n

(» = 1,2,-).

It is easy to verify that F(x) is a d.f. If

bk = (4k2-2k)n,       it* = [exp (A)]

then

(4.13) lim F"\x + bk) = A(x).
ft-» 00

But if we take bk = (4k2 + 2k)n, nk = [exp(Ak)], then

lim Fnk(x + bk) = exp( - e ~x+ cosx).

ft-» 00

Notice that the latter distribution is also in A*, since it satisfies

«V^x + 2n) = <ï>(x).
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Using Theorem 4.2 we can conclude that F(x) cannot be partially attracted

with a positive rank to any proper distribution.

Example 4.2. Let

F(x) =

exp( - e~x) if x S 0 and if 2n(n - 1) < x = 2n2,

exp( - e-^2/2n + 2nx-2n3_2„2) tf 2n^ < x ^ 2n(n + 1)

(»-1,2,-).

This d.f. is also not partially attracted with positive rank to any proper distri-

bution, since we have (4.13), when bk = 2fe2 — k,nk = [exp(At)] and

lim F"k(akx + bk) = O(x),
ft-* 00

where ak = J(2k), bk = 2k2, nk = [exp(A,V],

if x < 0,
"{

(. ex
<5(x)

'expi-e~x¿)       ifx = 0.

Notice that the distribution <D(x) is not an r-limit for r > 0.

5. Uniqueness of the numerical sequences. Let us see to what degree the

sequences {nk}, {ak} and {bk} are determined by the functions <P(x) and F(x) and

conditions (1.2) and (1.3).

Theorem 5.1. Assume the validity of (1.2) and

(5.1) lim ink/nk+x) = r0,
ft-» 00

wAere r0 (0 < r0 < 1) is the maximal rank of the distribution ^(x). Assume

also that

(5.2) lim F"\akx + ßk) = O(x),
ft-» 00

wAere

(5.3) limsup(vjvfc+1)< 1.
ft-» 00

TAen

(a) TAere exists an integer-valued function on the indices fep = p(fc) so that

for sufficiently large k

(5.4) p(fe + 1) > p(fe)

and
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lim (vt/n„w) =  1, lim (at/a„(Jk)) = 1,
k—ao /¡-»oo

(5.5)
lim (ßk - bßW)laMk)) = 0.

k -*oo

(b) In particular if we have also

(5.6) lim(vk/vt+1) = r0,
*-»CO

then there exists an integer p such that

lim (vjnk+p) =1, lim (ak¡ak + p) = 1,
sr   <7\ *-»00 *-»00

\im((ßk-bk+p).lak+p)= 0.
k-*oo

Proof, (a) To sufficiently large fe's (vfc _ nx) there correspond integers m = m(k)

defined by

nmèvk<nm+x.

Put

if v,zg(nm/nm + 1)1/2,

m
otherwise,

hence

(»J«.+i)1/a < (v*/n„w) á (nm+i/n,„)1/2 •

-r[m + 1

If for some subsequence fcs the limit

lim (vts/n„(M) = c
s-*co

exists, then from above inequalities and (5.1) it follows that

(5.8) r0/2zgc<rö1/2.

Using (1.2) and (5.2), we deduce

limF"ik-\akx+ßks) = Q>1'c(x)
S-+00

and

lim F^'Xa^x + t>„(lu) = <D(x).
s -»oo

Thus by Khintchine's theorem the d.fs. 0(x) and $1/£,(x) belong to the same

type. From Theorem 2.2 it follows that c = r™, where m is an integer. This and

(5.8) imply (5.5). Using the first of these equalities together with (5.3) we get

lim inf (/!„(*+x )lnpik)) > r0   > 1,
t-»00

which proves (5.4).
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(b) The first of the equalities (5.5) together with (5.6) implies that

limKwKift + i)) = r0.
ft-» CO

Hence by (5.1) we conclude that for large fe's

p(k + 1) - p(k) = I,

or for these fe's

p(k) = p + fe,

where p is an integer. Therefore the relations (5.5) take the form (5.7).

In order to explain the content of this theorem let us call two triples of numerical

sequences (nk, ak, bk) and (vk, ctk, ßk) asymptotically equivalent if

lim ivjnk) = 1,       lim (aja*) = 1,       lim üßk - bk)¡ak) = 0,
ft-»0O fc-*CO ft-»CO

since only in this case equality (1.2) remains valid when we replace one triple by the

other. This implies that together with (5.2) we have also

lim FVk+"t<vc + ßk) = <D(x)
ft-» 00

if tk = o(vk) as fc -» co. Therefore every sequence of the form (5.2) may contain

"superfluous" terms, the presence of which does not influence its "density" or the

value of the lower limit (3.1). Thus the first part of the theorem can be rephrased

as follows: Every sequence of the form (5.2) which does not contain "super-

fluous" terms (condition (5.3)) is asymptotically equivalent to a certain subse-

quence of (1.2), if this sequence has the maximal "density" r0.

Now, the sequences {nk+p}, {ak+p}, {bk+p} are translations of the original

sequences {nk}, {ak}, {bk}, hence the second part of the theorem can be rephrased

to read :

The representation of the distribution <P(x) by the d.f. F(x) in the form (1.2)

with the additional condition (5.1) is unique in the following sense: the functions

<E>(x) and F(x) and the conditions (1.2) and (5.1) determine the sequences {nk},

{ak}, {bk} "asymptotically" up to a translation.

A slightly more general form of the second half of the previous theorem is :

Corollary 5.1. Assume (1.2) and (5.2) and that the following limits exist and

are positive

lim ink¡nk+y) = r, lim (vk/vi+1) = p.
ft-»oo ft-»co

Let   r0   (0 < r0 < 1) be the maximal rank of Q>(x). Put

m = (lgr0)/lgr, p = (lgr0)/lgp.
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Then m and p are integers and there exists an integer p such that

lim (v^/rc^) = röp, lim (amJaßk) = ap0,
fe-»-oo fc-*oo

lim (ßmk - b^Ola^) = b0(l + a0 + ••• + ag"1 ),
k-*oo

where a0, b0 are defined by (3.12).

In particular, if r = p = r0, then these equalities coincide with (5.7).

6. A special case of attraction to distributions of the class A*. Let <I>(x) be an

r-limit distribution (r > 0). Our aim is to characterize its r-attraction domain.

By Theorem 3.1, if <ï>(x)is one of the distributions (1.1), then its attraction domain

of positive rank is equal to its full attraction domain, which is characterized in

[2] and [11]. Hence it is enough to study the case when 3>(x) is not one of the

distributions (1.1).

Theorem 5.1 suggests that the characterization of the r-attraction domain

can be given by indicating a method of construction of the numerical sequences

{nk}, {ak} and {bk} with the aid of the given <D(x) and F(x). The conditions found by

us will in fact be formulated in these terms.

We give only a partial solution of the problem. For <I>(x) e A* we consider

only a special case of attraction, namely, when the constants ak appearing in (1.2)

are equal to 1, i.e., instead of (1.2) we assume

(6.1) lim F"k(x + bk) = d>(x).
fc-»oo

In addition we shall assume that the limit distribution €>(x) is continuous and the

d.f. F(x) is continuous for sufficiently large x.

In the next section we shall see that the general case (1.2) with respect to the

distributions of classes O* and *P* may be reduced to the special case (6.1) here

considered.

We start with some lemmas. Throughout these lemmas we assume (6.1) and

(5.1), where

(6.2) 0 < r0 < 1.

Let b0 be the number given in (2.10) and let n (0 < n < b0) be any number. Put

lg<D(x +n)
(6.3) c6(x) =

lg<&W

By (2.6), (¡>(x) is defined and continuous for every x. It is also periodic with period

b0 and of bounded variation in every final interval. Let M and m be the maximum

and minimum of 4>(x). By (6.2), <I>(x) ̂ A(x), hence m < M. A theorem of S.

Banach [12, Chapter VIII, §5, Corollary 2, p. 227] implies that for almost every
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value y in [m,M] the equation v =/(x) has a finite number of solutions in every

finite interval. Let us choose a number A with

(6.4) m < A<M

and let 0 = y, < y2 < ■■■ < y„ < A0 be all the solutions of equation

(6.5) ç6(x) = A

in the interval [0,A0). Put

(6.6) t=   min(y¡+1-y,.)       (yn+1 = A0 + y,).
láián

Lemma 6.1.   For every finite x we have

(6.7) Fix) < 1.

Proof. Since in our case (6.1) ak = 1 we deduce from Lemma 3.1 that

(6.8) lim(At+1-A,) = A0.
ft -»CO

Hence it is clear that bk —> oo. If there existed an L such that F(x) = 1 for x > L

then, for all x and sufficiently large fe,  F(x + bk) = l.   Hence by  (6.1) also

O(x) = 1 which is impossible.

Let F(x) be continuous and positive for x = T. By (6.7) the function

(6 9) f(x) = lgF(x+>?)
l°,y; /W        lgF(x)     '

where the number n was given in (6.3), is defined and continuous for x _ T.

We may assume that the number A in (6.4) and (6.5) is such that the solutions of

equation

(6.10) f{x) = A

have no accumulation point. By (6.1) we have for every x

(6.11) lim f(x + bk) = <6(x).
*-»co

Lemma 6.2. Let s and ô (0 <e<ô <z) be given numbers. There exists a

number B = B(e,ô)such that for every rootx' > B of (6.10)

f(x) # 0 provided e < \ x — x' | < ô.

Proof. It is enough to show that/(x) ¿= 0 for x' + e < x < x' + 5. Assume that

this is not true. Then there exist e0 and <50 (0 < e0 < <50 < t) and two sequences

{xk} and {x'k} of roots of (6.10) such that for every fc

(6.12) xk + e0 < x'k < xk + <50
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and xt-> co as k-* co. To every xk we let correspond the term £>m(k)   from the

sequence {bk} which is closest to xk from the left. Hence

"mCM = xk < £>m(4>+1.

Put

(6.13) xk = bm,k) + tk, xk = bmm + tk,

then

0^ tk< bm(k)+i - bm(k)

and by (6.8) the sequence {tk} is bounded. Also by (6.12) and (6.13),

0 < e0 ^ t'k - tk = ¿o < T-

Without restricting the generality of our argument we may assume the existence

of the limits lim*.,«,/* = t and limk^œt'k = /'. Thus

(6.14) 0<í'-í<t.

On the other hand, from (6.10) and (6.11) and the definition of {x*} and {x*}

it follows that

A = f(xk) = f(tk + bmW) = <j>(t)

and

A=f(x'k)=f(t'k + bm(k)) = 4>(t').

Thus t and t' are solutions of (6.5), which contradicts (6.14) by the definition

of x in (6.6).

Definition 6.1. The root ¿;, respectively x, of the equation (6.5), respectively

(6.10), is said to be a "distinguished" root (a d-root) if

{$(£, + t/2) - A} ■ {<KZ - t/2) - A) < 0,

respectively

{fix + t/2) - A} ■ [fix - t/2) - A} < 0,

where x is given by (6.6). The existence of d-roots of equation (6.5) is guaranteed

by (6.4).
Definition 6.2. The two sequences {ak} and {a'k} are said to be equivalent,

a*~<*t,if

lim (afc-a;) = 0.
k->ca

Lemma 6.3. For every d-root £, of (6.5) there exists a sequence {x(k)} of

d-roots o/(6.10) such that

(6.15) fe" **>-{•
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Proof. Let £ be a d-root of (6.5). Let us assume for definiteness that for all

sufficiently small positive x, c6(x + c;) > A. By (6.11), for every sufficiently small

£>0,

lim/(¿j + ë + bk) = cb(£, + e) > A
ft-» CO

and

lim/K - £ + bk) = cbtf -e)<A.
ft-» CO

Hence from some fe on

(6.16) M-e + bk)<A,   M+s + bk)>A.

Therefore for sufficiently large fe there is in every one of the intervals

(6.17) (£ - £ + bk, Ç + £ + bk)

a solution to (6.10). But according to Lemma 6.2 the intervals

(6.18) [_Z+bt-o+e,C+bk-2¿]

and

(6.18') [¿j -l- bk + 2s, í + bk + Ô - e]

do not contain any roots of (6.10) if fc is sufficiently large. Hence by (6.17),

/(x) < A if x is in (6.18) while/(x) > A if x is in (6.18'). If initially £ is sufficiently

small (0 < £ < t/6) and ¿> is close enough to x (5t/6 < ö < t) then, for every x in

(6.17), x - t/2 is in (6.18) and x + t/2 in (6.18'). Hence all the roots of (6.10) in

the interval (6.17) are d-roots. Let us define x(k) as the d-root which is closest

to bk + Ç. The definition is legitimate since these roots do not have an accumulation

point. Now, for large fe's, x(fe) is in (6.17), hence |x(fc)— bk— £| <s, which

proves (6.15).

Corollary 6.1.   TAe set of d-roots of (6.10) is unbounded.

Let us define a sequence {t(n)} of d-roots of (6.10) as follows: i(l) will be ar-

bitrary and

(6.19) t(n + 1) = min {x : x ^ t(n) + t/2}.

Lemma   6.4. For any sequence {x(k)} of d-roots of equation (6.10) that satisfies

(6.20) lim inf (x(fe + 1) - x(fe)) > 0
*-»oo

iAere exists an integer p and a subsequence {nk} such that

(6.21) i(nt)~x(p + fc).
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Proof. From (6.20) it follows that x(/c)-»oo. By Lemma 6.2 we have

lim inft <Q0(x(/c + 1) — x(fc)) = x. Let p be sufficiently large so that

(6.22) x(p) = i(l),   x(k + 1) - x(k) > t/2       for k =■ p.

To x(p + k) corresponds the term t(nk) of the sequence {t(n)} which is closest

to it from the left. According to (6.19) such a term exists, hence

(6.23) t(nk)^x(p + k)<t(nk + l).

It is easy to see that this correspondence defines a subsequence, i.e.,

n(k + 1) > n(k) (if we allow repetitions the lemma holds even without assuming

(6.20)). Indeed, from (6.22) it follows that

x(p + k + 1) > x(p + fe) + t/2 = t(nk) + t/2,

hence, by (6.19), t(nk+x) = x(p + k + 1). But according to (6.23) this means that

n(k) < n(k) + 1 = n(k + 1). In order to prove (6.21) suppose that there exist an

80 > 0 and t(nkJ, x(p + ks) such that, for every natural s, x(p + ks) — t(nks) = e0.

By Lemma 6.2, x(p + ks) — t(nk) > t/2 for sufficiently large s. Hence by (6.19)

also x(p + ks) = t(nks+ x), which contradicts the definition of nk in (6.23).

Corollary 6.2. There exists a subsequence {nk} and a d-root ¿j of equation

(6.5) such that

(6.24) bk ~ tinô - £,.

Proof. According to Lemmas 6.3, 6.4 and condition (6.8) we have

bp+k ~ f(nk) — ¿j', where p is an integer, {' a d-root of (6.5) and {nk} is a certain

subsequence. But by (6.8), bp+k ~ bk + p • b0, hence bk ~ t(nk) - (c;' + pb0).

Since fc>o is the period of c6(x), ({' + pb0) is also a d-root of (6.5).

Lemma  6.5. Assume (6.24). IfS,' is the d-root of'(6.5)following ¿j then

(6.25) bk~t(nk + i)-t'.

Proof. Let

(6.26) {' - { - t'.

From (6.11) and (6.24) follows

lim f(t(nk) + x'±e)=4>(Z'±e).
fc->00

Since £,' is a d-root of (6.5), for every e > 0 and for all large k the intervals

(6.27) (t(nk) +x'-e, t(nk) + x' + e)

contain a root of (6.10) each. Using the same argument as in the proof of Lemma



228 D. MEJZLER [May

6.3, it can be seen that for sufficiently large fe all the roots that are in (6.27) are

d-roots. Now, if we prove that, from some fe on, the intervals

(6.28) (t(nk) + t/2, t(nk) + t' - e)

do not contain d-roots, it will follow from the definition of the sequence {t(n)} in

(6.19) that

t(nk + 1) e (t(nk) + t' - e, t(nk) + z' + s),

which proves (6.25) by (6.24) and (6.26). Moreover, it is easy to see that in (6.28)

there are no roots of (6.10). Indeed, suppose that for some e0 > 0, a subsequence

{n(ks)} and a sequence {xs} of roots of (6.10),

t(nks) + zj2 < xsz% t(nkt) + z' - e0

for every s. Let

(6.29) xs = t(nks) + z„

then t/2 < zs _ t' — £0. We may assume that lims.h0Czs = z. Then

(6.30) 0 < z < t'.

By (6.24) and (6.29), xs ~ c; + z + bks. But since xs is a root of (6.10) we have, by

(6.11), </>(£ + z) = A. Therefore (c; + z) is again a root of (6.5). This contradicts

the definition of ¿' since, by (6.30), ¿; < t) + z < £'.

For our purpose it is enough to give a method to construct a sequence {ßk} for

which

(6.31) limiA-A,)
ft-» CO

exists and is finite.

Lemma  6.6. Let m be the number of d-roots of (6.5) in [0, A0). In order that

for the sequence of indices {nk} the finite limit

(6.32) lim(i(n,)-At)
ft-» 00

exist, it is necessary and sufficient that for large k this sequence coincides with

an arithmetic sequence {vk} of the form

(6.33) vk = c + m(fe - 1),

where c is an integer.

If this limit exists then it is a d-root o/(6.5).

Proof. Let ¿; be the limit (6.32). By (6.11) using Gnedenko's theorem we get

lim/(x + i(n(t)-0 = ^(x),
ft-» CO
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hence, substituting x = £, x = í — t/2, x = ¿j + t/2, we establish that ¿j is a d-root

of (6.5). This proves the second part of our lemma.

Now assume (6.24). By using the previous lemma m times we get

bk ~ t(nk + m) - ¿;m,

where ¿;m is the znth next root to ¿j. Since £,m = b0 + Ç, then, from (6.24),

h + b0 ~ t(nk + m) - £, and, by (6.8), bk+x ~ t(nk + m) - {. On the other hand,

by (6.24) also bk+x ~ t(nk + x) - Ç, therefore

(6.34) t(nk+x)~t(nk + m).

By (6.19), for every n, t(n + 1) - t(n) = t/2 > 0, hence (6.34) implies that for

sufficiently large k, t(nk+x) = t(nk + m). Thus also nk+x = nk + m for large k.

This means that for sufficiently large k the sequence {nk} coincides with a certain

{v,} of the form (6.33), which proves the necessity of our condition.

By Corollary 6.2, there exist a sequence of indices {nk} and a d-root £, of equation

(6.5) so that (6.24) holds. Because of the necessity of our condition, nk has the

form (6.33) for large k. But it is easy to see that if the limit (6.32) exists for some

sequence which has the form (6.33) for large k then, by the previous lemma and

(6.8), it exists also for every sequence that has the form (6.33) from some k on.

Thus we have proved that our condition is sufficient.

Corollary 6.3.

lim (t(n + m) - t(n)) = b0.
n-»oo

Proof. Consider the m subsequences tkc,

it>c = t(c + m(fc — 1)), c = l,2,..,m.

According to the lemma and condition (6.8), for every e > 0 there is an N so that

if k ^ N then | tk+1 c - tkc - b0 \ < e uniformly in c (1 g c ^ m). On the other

hand, for every n there are a c and a k such that t(n) = tk>c and thus

f(« + m) = tk+xiC. Therefore, for n > mN we have | t(n + m) — t(n) - b0\ < e.

With the same notation as before let us construct another sequence {p\} which

satisfies condition (6.31).

Lemma  6.7. Let ßx (ßx > T) be any number. Define

(6.35) p\+1 = min{x:x^p\ + c»o-i:/2}.

Then the limit (6.31) exists and is a d-root of (6.5).

Proof. By Lemma 6.4 there exists a sequence {nk} and an integer p = 0 such that

(6.36) t(nk)~ßp+k.
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But Corollary 6.3 implies that tink + m) ~ r(nt) + A0. Hence, by (6.36),

t{nk + m)~ ßp+k + b0, which means that for every e (0 < e < t/2)

(6.37) ßp+k + A0 - £ < t(nk + m)< ßp+k + b0 + e

for all large fe. Now by Lemma 6.2 and (6.19)

t(nk + m) — t(nk + m— l)> z — e

for all large fe. Hence, by (6.37), for all large fe equation (6.10) does not have

solutions in the interval

(0P+ft + K - t/2, ßp+k + A0 - £)

and

min {x : x ^ ßp+k + A0 - t/2} = min {x : x 2: t(nk + m — 1) + t/2}.

This together with (6.19) and (6.35) implies that, for all large fe, t(nk + m) = ßp+k+1.

But from (6.36) we get t(nk+l) ~ ßp+k + 1, therefore, from some fc on,

'("ft+i) ~ t(nk + m). By the previous lemma this is enough to guarantee the

existence of the limit (6.32). Let this limit be {. Then by (6.36) also

lim(ßp+k-bk) = 0,
ft-» CO

which, together with (6.8), implies the existence of the limit (6.31) and that this is

equal to (t; + pb0). But since ¿; is a d-root of (6.5), (£ + pb0) is also a d-root.

Theorem 6.1. Let fl>(x) be a continuous distribution of the class A* with the

maximal rank r0 (0 < r0 < 1). Let F(x) be a d.f. which is continuous from some

x on.

In order that there exist sequences of real numbers {bk} and positive integers

{nk}, satisfying condition (5.1), so that (6.1) holds, the following conditions are

necessary and sufficient:

(*) F(x) < 1 for every x;

(**) limk->ao(ßk + i ~ ßk) = b0, where {ßk} is the sequence (6.35) and b0 is the

parameter in (2.10);

(***) lim^œ(lgF(x + ßk)ßg F(ßk)) = lg<5(x + 0/lg <t>(í)> where £ is a d-root

of equation (6.5) in [0, A0).

Proof. I. Necessity. Assume (5.1) and (6.1). The necessity of (*) is proved in

Lemma 6.1. Under the assumptions of the theorem, relations (6.8) and (6.31), and

thus condition (**), hold. Let c;' be the limit of (6.31). By (6.38) and Gnedenko's

theorem we have for every x

lgF(x + ßk) = lgflfx+t;')

^w    lgF(A) lgcP({')    '
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As was proved, ¿j' is a d-root of (6.5). But the distribution O(x) belongs to A*,

hence it satisfies condition (2.9). Hence for every x and every integer n

IgOfx + {' + nb0) _ lgcp(x + j')

IgOfê' + nb0) lg*«')    '

which proves that the number t, in condition (***) can be taken in the interval

[0,b0).

II. Sufficiency. Assume that the d.f. F(x) satisfies conditions (*), (**) and

(***). Let

bk = ßk-t,       nt = [(lg3>(0)/lgF(A)].

By (*), the sequence {nk} is defined for every k. Since, according to (**), ßk-+<x>

then also nk -» oo and bk -» oo as k -» co. For x — ¿j instead of x, condition (***)

takes the form

lim {F(x + 6k)}Cf««»/uw.> = cp(x).
*-*oo

Hence from lim^^ix + 6t) = 1, (6.1) follows.

Conditions (**) and (***) imply, by Gnedenko's theorem, that for all x

lgF(x+ßk+x)  = lg<D(x + b0 + Q

»™    lgFíA) lg«D(0

In particular, if x = 0 we get, using (2.10),

t™   lgF(&)    - r°'

which proves that the sequence {/ij thus constructed satisfies condition (5.1).

Remark 6.1. In defining the sequence {ßk} it is possible to consider the distri-

bution <3>(x/a) where a > 0 and thus to get necessary and sufficient conditions so

that F'^ax + bk) -* <P(x) as k -► oo and (5.1).

Remark 6.2. The assumption of continuity of the d.f. F(x) may not be essential

in our proof. It seems to us that the lemmas proved are still valid, if instead of a

root of (6.10) we take a number x' such that {fix' + 0) - A} ■ {fix' - 0) - A} è 0

and replace the maximum and minimum by the upper and lower bounds respec-

tively. The one-sided limits /(x + 0) and /(x - 0) exist since /(x) is of bounded

variation.

Example 6.1. Let <D(x) = exp(- e~x+C08*). By Example 4.2, 0>(x)e A*. Here

r0 = exp( - 2n), b0 = 2n. Let

(0 if x g 0,
(x) = \

Uxp(-e~x+C05X-lgt)   ifx>0.



232 D. MEJZLER [May

If bk = 2kn, nk = \_2nk ■ exp (2nk)~\ it can be shown that conditions (5.1) and

(6.1) are satisfied.

On the other hand if n = n we have </>(x) = exp( — n — 2 cos x) and

m = exp(— 7t — 2), M = exp( — n + 2). Let A = expi~ n). Then equation

(6.5) takes the form cosx = 0 and it has two d-roots in [0,2tt):c;i = n/2 and

•f 2 = 37t/2. Equation (6.10) then has the form

cosx +(l/2)lg(l +7t/x) = 0.

Let r(l) be the first positive root of this equation. Then, since limx_œ(l + n/x) = 1,

the sequence i(n) has the form i(n) = (2n - 1)jt/2 + s„, where £„ -* 0. For {ßk} we

can choose, for instance,

ßk = /(2k + 2) = 2k;t + 3tt/2 + e'k,

where e¿->0. In this way the sequence {ßk} defines the sequence {bk} asymptotically

exactly up to the additive constant 3jt/2, which is one of the d-roots of equation

(6.5), i.e. cosx = 0 in [0,2jt).

7. The attraction domain of distributions from the classes <P* and W*. We shall

show here that the problem of determining the r-attraction domain (r > 0) of the

classes «5* and *F* can be reduced to the special case studied in the previous

section.

Lemma 7.1. Let <&(x) be a proper distribution of the class <!>*, wAose "left

end" (2.3) satisfies the condition

(7.1) x0 = 0.

7/(1.2) and (5.1) are satisfied then also

(7.2) lim F"\akx) = <D(x)
ft-» 00

and, for every x, (6.7) holds.

Proof. From (7.1) follows (2.5) with a > 1. Hence, by Lemma 3.1,

(7.3) lim(a». + 1/ak) = a, lim ((At+1 - bk)¡ak) = 0.
ft-»00 ft-»CO

Let £ and q (£ > 0,1/a < q < 1) be any numbers. By (7.3) there exists an integer

p so that, for every non-negative integer m,

(7-4) ap+Jap+m+1<q,      (Ap+m+1 - Ap+m)/ap+m < e.

For every natural number n we have

Op + n Pp       ,    y      Op + m+l ~ Op + m   .   ap + m

ap + n       ap + n        m = 0 ap + m ap + n
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hence using (7.4)

AP+n

*p + n *p + n

I <7m.
+ £ ¿-  cj"

m = l

Now since by (7.3) ak->co (k->oo), 0 < a < 1 and £ is arbitrary then

limk^tx>ibklak) = 0. This proves, by Gnedenko's theorem, equality (7.2). In order

to prove (6.7) let us suppose that F(A) = 1 for some A. Since ak -* co we would

have, for every x>0 and every large n, F(a„x) ^ F(A) = 1. Thus, by (7.2),

<P(x) = 1 for x > 0, which together with (7.1) contradicts the assumption that

<D(x) is a proper distribution.

Lemma 7.2. Let <D(x) be a proper distribution of the class W*, wAose "right

end" (1.6) satisfies the condition

(7.5) y0 - 0.

If (1.2) and (5.1) are satisfied then there exists a number A so that also

(7.6)

and the d.f. F(x) satisfies-.^

(7.7)

for every e>0, and

(7.8)

lim F"kiakx + A) = <P(x)

Fib - 6) < 1.

F(A - 0) = 1.

Proof. From (7.5) follows (2.5), where 0 < a < 1. Hence also (7.3). For every e

and q (fi > 0, a < q < 1) there exists an integer p such that for every integer

k^.p and every integer m Sr. 0

(7-9) ak+m+1lak + m<q,       ibk + m+1 - bk_ym)¡ak+m < e,

For every integer n ^ 0 we have

Aft+m+i — bk+m   ak+m

at < £.

"k + n      bk   _   y

ak m = 0 ak + m ak

Hence by (7.9)

(7.10) | bk+„ - bk\lak ̂  £ "S   qm < 6/(1 - q).
m = 0

Therefore since ak<e, also | bk+n — bk\ <e2/(l — q). Thus the sequence {bk}

converges. Let

(7.11) lim bk = A.
ft-» 00
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By taking limits in (7.10) as n -» oo with fixed k we obtain | b — bk\lak zg e/(l — q).

Hence, by Gnedenko's theorem, (7.6) follows.

Now suppose that for some e > 0

(7.12) F(b-e) = l,

where b is the limit (7.11). Let x be any number. Since ak -* 0 then by (7.11), for

large k, akx + bk> b - e. Thus, by (7.12), F"k(akx) = 1 and, by (1.2), <D(x) se 1,

which is a contradiction proving (7.7).

From (1.2) follows that for every x

(7.13) lim Fiakx + bk)= I.
*-»oo

On the other hand for every e > 0, akx + bk < b + e for large k. Thus for every

e>0

(7.14) F(t>+e)=l.

Now note that for every x < 0

(7.15) akx + bk<b

from some k on. Indeed, assume that for a certain ¿; < 0 and a subsequence ks we

have a^c; + bks _ b. Let n (t, < n < 0) be any continuity point of the distribution

3>(x). Then also akr\ + bks > b, hence, by (7.14), F(akr\ + bk^) = 1 for every s.

According to (1.2) this means that 4*>(//) = 1, which contradicts (7.5).

Finally, since (akx + bk)-> b as fc-> oo, equality (7.8) follows from (7.13) and

(7.15).

Theorem 7.1. Let $(x) be a proper distribution of the class O*, respectively

*¥*, let r0 (0 < r0 < 1) be its maximal rank.

In order that F(x) be attracted with a positive rank to 5>(x) the following

conditions are necessary and sufficient:

(*) Condition (6.7), respectively, conditions (1.1) and (7.8).

(**) There exist real numbers ßk and integers nk,for which condition (5.1)

holds, so that

(7.16) lim F"k(x + ßk) = ö(x),

where the distributions F(x) and O(x) are defined by

0 i/xzgO,

F(ex)    z/x>0,

rO i/xzgO,
Fix) = I O(x) = <P(x0 + ex),

respectively,

Fix) = Fib-e~x),     Ö(x) = <D(y0-e-*).
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Proof. I. Necessity. Let us assume that F(x) is partially attracted with positive

rank to i>(x) in <D*, and hence (1.2) and (5.1) hold. Therefore also

lim F"k(akx + bk) = $>(x + x0),
ft-» 00

where bk = akx0 + bk. The distribution <J>(x + x0) also satisfies condition (7.1)

and Lemma 7.1 is applicable. Thus follows the necessity of (*). As was shown,

(7.2) holds in our case. Let us substitute in (7.2) ex for x > 0 and ßk = lgat, then

we obtain

(7.17) limF"k(e*+p''t) = <p'(x).
ft-» 00

It was shown in the proof of Lemma 7.1 that ak -* oo as fc -* co. Thus, for every

x, x + ßk > 0 for large k, hence also for sufficiently large k

F(x+ßk) = F(ex+ßk).

This and (7.17) imply the necessity of condition (**). Note that by (*) F(x) is a

distribution.

II. Sufficiency. Assume conditions (*) and (**). By Theorem 2.3 the distri-

bution <P(x) belongs to A*. We have seen that in this case ßk -» co (k -* oo). Put

in (7.16) lgx instead of x and ak = exp(bk), then we get

(7.18) lim F"k(lg akx) = <D(x + x0)
ft-» CO

for x > 0. By the definition of function F(x)

F(x)= F(\gx) for x> 1.

Since ak-* oo, for every x > 0 and large fe, akx > I thus also F(akx) = F(\gakx)

and by (7.18)

(7.19) lim F"k(akx) = <5(x + x0)
ft-» 00

for x > 0. Now, since F(x) is a d.f., then clearly also

lim F"k(akx) = 0
ft-» 00

for x < 0. Condition (*) implies that this holds also for x = 0. On the other hand

also <D(x + x0) = 0 for x :£ 0. Thus equality (7.19) is fulfilled for every x.

Since, by assumption, (5.1) holds, the d.f. F(x) is partially attracted to <P(x)

with positive rank.

The statement for <E»(x) e *P* is proved in a similar way. Here we use Lemma 7.2,

and, by (7.7) and (7.8), F(x) is a d.f.
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