Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Nonlinear elliptic boundary value problems. II


Author: Felix E. Browder
Journal: Trans. Amer. Math. Soc. 117 (1965), 530-550
MSC: Primary 35.47
DOI: https://doi.org/10.1090/S0002-9947-1965-0173846-9
MathSciNet review: 0173846
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] F. E. Browder, Functional analysis and partial differential equations. I, Math. Ann. 138 (1959), 55-79. MR 0107818 (21:6540)
  • [2] -, On the spectral theory of elliptic differential operators. I, Math. Ann. 142 (1961), 22-130. MR 0209909 (35:804)
  • [3] -, On the solvability of nonlinear functional equations, Duke Math. J. 30 (1963), 557-566. MR 0156204 (27:6133)
  • [4] -, Variational boundary value problems for quasi-linear elliptic equations of arbitrary order, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 31-37. MR 0166474 (29:3750)
  • [5] -, Variational boundary value problems for quasi-linear elliptic equations. II, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 592-598. MR 0166475 (29:3751)
  • [6] -, Variational boundary value problems for quasi-linear elliptic equations. III, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 794-798. MR 0166476 (29:3752)
  • [7] -, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 864-876. MR 0156116 (27:6048)
  • [8] -, Nonlinear equations of evolution, Math. Ann. 80 (1964), 485-523. MR 0173960 (30:4167)
  • [9] -, Strongly nonlinear parabolic boundary value problems, Amer. J. Math. 86 (1964), 339-357. MR 0166489 (29:3764)
  • [10] -, Nonlinear parabolic boundary problems of arbitrary order, Bull. Amer. Math. Soc. 69 (1963), 860-863.
  • [11] G. Köthe, Topologische lineare Räume, Vol. 1, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 107, Springer, Berlin, 1960.
  • [12] M. A. Krasnoselski, Topological methods in the theory of nonlinear integral equations, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956. (Russian) MR 0096983 (20:3464)
  • [13] -, On a new fixed point principle, Trudy Mat. Seminar Voronezh Univ. (1958), 87-90. (Russian)
  • [14] J. Leray and J. Schauder, Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup. 51 (1934), 45-78. MR 1509338
  • [15] G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341-346. MR 0169064 (29:6319)
  • [16] -, Two theorems on nonlinear functional equations in Hilbert space, Bull. Amer. Math. Soc. 69 (1963), 691-692. MR 0190778 (32:8188)
  • [17] -, On a ``monotonicity'' method for the solution of nonlinear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1038-1041. MR 0162159 (28:5358)
  • [18] M. M. Vainberg, Variational methods for the study of nonlinear operators, Moscow, 1956. (Russian)
  • [19] M. M. Vainberg and R. I. Kachurovski, On the variational theory of nonlinear operators and equations, Dokl. Akad. Nauk 129 (1959), 1199-1202. (Russian) MR 0114103 (22:4930)
  • [20] M. I. Vishik, Solution of a system of quasi-linear equations in divergence form under periodic boundary conditions, Dokl. Akad. Nauk 137 (1961), 502-505. Soviet Math. Dokl. 2 (1961), 293-297. MR 0150453 (27:451)
  • [21] -, Boundary value problems for quasi-linear strongly elliptic systems in divergence form, Dokl. Akad. Nauk SSSR 138 (1961), 518-521. Soviet Math. Dokl. 2 (1961), 643-647. MR 0150454 (27:452)
  • [22] -, Simultaneous quasi-linear equations with lower order terms, Dokl. Akad. Nauk SSSR 144 (1962), 13-16. Soviet Math. Dokl. 3 (1962), 629-633.
  • [23] -, Quasi-linear strongly elliptic systems of differential equations having divergence form, Trudy Moskov. Mat. Obšč. 12 (1963), 125-184. Trans. Moscow. Math. Soc. 1963, 140-208. MR 0156085 (27:6017)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35.47

Retrieve articles in all journals with MSC: 35.47


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1965-0173846-9
Article copyright: © Copyright 1965 American Mathematical Society

American Mathematical Society