A CORRECTION OF SOME THEOREMS
ON PARTITIONS

BY

PETER HAGIS, JR.

Theorem 4 in [1] gives a convergent series representation for \(p_a(n) \), the number of partitions of a positive integer \(n \) into positive summands of the form \(mp \pm a_j \). Here \(p \) is an odd prime and \(a_j \) is an element of a set \(a \) consisting of \(r \) positive residues of \(p \) each of which is less than \(p/2 \). It is stated that the theorem holds for \(n \geq A/12p \), where \(A = rp^2 - 6 \sum_{j=1}^{r} a_j(p-a_j) \). In the proof of this theorem the estimate \(O(n^{1/3}k^{2/3} + \delta) \) is used for certain complicated exponential sums. The proof of this estimate given in Theorem 2 of [1] depends on the fact that \((A - 12pn, k) = O(n) \). This is clearly false (in general) if \(A = 12pn \) since \((0, k) = k \). Thus, Theorem 4 of [1] has been established only if \(n > A/12p \).

Similar remarks apply to Theorem 6 in [2] in which a convergent series is obtained for \(q_a(n) \), the number of partitions of \(n \) into distinct positive summands of the form \(mp \pm a_j \). Here it is asserted that the theorem holds for \(n \geq -A/12p \). However, the proof given is valid only if \(n > -A/12p \). For the argument used to establish the required estimate \(O(n^{1/3}k^{2/3} + \delta) \) for the exponential sums involved does not hold if \(A = -12np \). Thus, until (if ever) the necessary estimates contained in Theorems 2 and 3 of [1] and Theorems 2 through 5 of [2] can be justified for \(n = \pm A/12p \) we must exclude these values of \(n \) from consideration.

We conclude by giving a simple necessary condition for \(A = \pm 12pn \). From the definition of \(A \) given above and the fact that either \(a_j \) or \(p - a_j \) is even we see that if \(A = \pm 12pn \) then \(12|r \).

REFERENCES

TEMPLE UNIVERSITY,
PHILADELPHIA, PENNSYLVANIA

Received by the editors September 21, 1964.

550