Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Classical expansions and their relation to conjugate harmonic functions


Authors: B. Muckenhoupt and E. M. Stein
Journal: Trans. Amer. Math. Soc. 118 (1965), 17-92
MSC: Primary 42.15
DOI: https://doi.org/10.1090/S0002-9947-1965-0199636-9
MathSciNet review: 0199636
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] R. Askey and I. I. Hirschman, Weighted quadratic norms and ultraspherical polynomials. I, Trans. Amer. Math. Soc. 91 (1959), 294-313. MR 0107772 (21:6494)
  • [2] L. Bers, Function-theoretical properties of solutions of partial differential equations of elliptic type, Contributions to the theory of partial differential equations, pp. 69-94, Annals of Mathematics Studies No. 33, Princeton Univ. Press, Princeton, N. J., 1954. MR 0070009 (16:1114a)
  • [3] L. Bers and A. Gelbart, On a class of differential equations in mechanics of continua, Quart. Appl. Math. 1 (1943), 168-188. MR 0008556 (5:25b)
  • [4] S. Bochner, Sturm-Liouville and heat equations whose eigenfunctionsareultraspherical polynomials or associated Bessel functions, Proceedings of the conference on differential equations, pp. 23-48, Univ. of Maryland, College Park, Md., 1955. MR 0082021 (18:484g)
  • [5] S. Bochner and K. Chandrasekharan, Fourier transforms, Annals of Mathematics Studies No. 19, Princeton Univ. Press, Princeton, N. J., 1949. MR 0031582 (11:173d)
  • [6] D. L. Guy, Hankel multiplier transformations and weighted $ p$-norms, Trans. Amer. Math. Soc. 95 (1960), 137-189. MR 0120506 (22:11259)
  • [7] C. S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 996-999. MR 0063477 (16:127b)
  • [8] I. I. Hirschman, The decomposition of Walsh and Fourier series, Mem. Amer. Math. Soc. No. 15 (1955), 65 pp. MR 0072269 (17:257e)
  • [9] E. Hopf, Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen von elliptischen Typus, S.-B. Berlin Math. Ges. (1927), 147-152.
  • [10] J. Horvath, Sur les fonctions conjuguées à plusieurs variables, Nederl. Akad. Wetensch. Proc. Ser. A. 16 (1953), 17-29. MR 0053276 (14:747b)
  • [11] A. Huber, On the uniqueness of generalized axially symmetric potentials, Ann. of Math. (2) 60 (1954), 351-358. MR 0064284 (16:258f)
  • [12] R. O'Neil, Convolution operators and $ L(p,q)$ spaces, Duke Math. J. 30 (1963), 129-142.
  • [13] H. Pollard, The mean convergence of orthogonal series of polynomials, Proc. Nat. Acad Sci. U.S.A. 32 (1946), 8-10. MR 0014499 (7:293h)
  • [14] -, The mean convergence of orthogonal series. II, Trans. Amer. Math. Soc. 63 1948), 355-367. MR 0023941 (9:426e)
  • [15] E. M. Stein, Note on singular integrals, Proc. Amer. Math. Soc. 8 (1957), 250-254. MR 0088606 (19:547b)
  • [16] -, Conjugate harmonic functions in several variables, pp. 414-420, Internat. Congress of Mathematicians, Stockholm, 1962. MR 0176098 (31:373)
  • [17] E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables. I, Acta Math. 106 (1961), 137-174. MR 0173019 (30:3234)
  • [18] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. Vol. 23, Amer. Math. Soc., Providence, R. I., 1939.
  • [19] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Clarendon Press, Oxford, 1937.
  • [20] I. N. Vekua, Generalized analytic functions, Pergamon Press, London, 1962 (translated from the Russian edition, Fizmatgiz, Moscow, 1959). MR 0108572 (21:7288)
  • [21] G. N. Watson, Theory of Bessel functions, Cambridge Univ. Press, Cambridge, 1922.
  • [22] -, Notes on generating functions of polynomials. III. Polynomials of Legendre and Gegenbauer, J. London Math. Soc. 8 (1933), 289-292.
  • [23] A. Weinstein, Discontinuous integrals and generalized potential theory, Trans. Amer. Math. Soc. 63 (1948), 342-354. MR 0025023 (9:584d)
  • [24] -, Generalized axially symmetric potential theory, Bull. Amer. Math. Soc. 59 (1953), 20-38. MR 0053289 (14:749c)
  • [25] G. M. Wing, The mean convergence of orthogonal series, Amer. J. Math. 72 (1950), 792-808. MR 0037923 (12:329e)
  • [26] A. Zygmund, Trigonometric series, 2nd. ed., Vols. I, II, Cambridge Univ. Press, New York, 1959. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42.15

Retrieve articles in all journals with MSC: 42.15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1965-0199636-9
Article copyright: © Copyright 1965 American Mathematical Society

American Mathematical Society