λ-CONTINUOUS MARKOV CHAINS. II(1)

BY

SHU-TEH C. MOY

Summary. Continuing the investigation in [8] we study a λ-continuous Markov operator P. It is shown that, if P is conservative and ergodic, P is indeed "periodic" as is the case when the state space is discrete; there is a positive integer δ, called the period of P, such that the state space may be decomposed into δ cyclically moving sets C₀, ..., Cₐ₁ and, for every positive integer n, Pⁿδ acting on each Cᵢ alone is ergodic. It is also shown that P maps Lq(μ) into Lq(μ) where μ is the non-trivial invariant measure of P and 1 ≤ q ≤ ∞. If μ is finite and normalized then it is shown that (1) if f ∈ L₁(μ), then {Pⁿδ+kf} converges a.e. (μ) to gₖ = ∑ₙ₌₀⁻¹ cₙ₊ₖ 1₁ₖ where cₙ = δ₁ₓ, f dμ if 0 ≤ j ≤ δ₁ and cₙ = cₙ if j = mδ + i, 0 ≤ i ≤ δ₁ - 1, (2) {Pⁿδ+kf} converges in L₂(μ) to gₖ if f ∈ L₂(μ), and (3) lim infₙ→∞ Pⁿδ+k f = gₖ a.e. (μ) if f ∈ L₁(μ) and f ≥ 0. If μ is infinite, then it is shown that (1) if f ≥ 0, f ∈ L₁(μ) for some 1 ≤ q < ∞, then lim infₙ→∞ Pⁿf = 0 a.e. (μ), (2) there exists a sequence {Eₖ} of sets such that X = ∪ₖ₌₁⁻¹ Eₖ and limₙ→∞ Pⁿ⁺₁ P⁻₁ Eₖ = 0 a.e. (μ) for i = 0, 1, ..., δ₁ and k = 1, 2, ...

I. Introduction. Let X be a nonempty set, X, a σ-algebra of subsets of X and λ, a σ-finite measure on X. Let p(x, y) be an X × X measurable function defined on X × X satisfying the following conditions:
1. p(x, y) ≥ 0 for (X × X) almost all (x, y),
2. ∫ p(x, y)λ(dy) ≤ 1 for (X) almost all x.

Let L₁(λ) be the collection of all λ-essentially bounded functions and A(λ), the collection of all finite, real-valued, countably additive functions on X which are absolutely continuous with respect to λ. Let A⁺(λ) be the collection of all non-negative elements of A(λ). For any f ∈ L₁(λ), P f is defined by

(1.1) P f(x) = ∫ p(x, y) f(y)λ(dy),

and for any v ∈ A(λ), vP is defined by

(1.2) vP(A) = ∫ v(dx) ∫ A p(x, y)λ(dy).

The operator P here is a special kind of λ-measurable Markov operator of E,
Hopf [7]. We call it a \(\lambda \)-continuous Markov operator. (1.1), (1.2) remain meaningful for non-negative \(f \) not necessarily \(\lambda \)-essentially bounded and non-negative \(\sigma \)-finite measure \(v \). The iterates \(P^n \) of \(P \) are then given by

\[
P^n f(x) = \int p^{(n)}(x, y)f(y)\lambda(dy)
\]

and

\[
vP^n(A) = \int v(dx)\int_A p^{(n)}(x, y)\lambda(dy)
\]

where \(p^{(n)}(x, y) \) are defined inductively by

\[
(1.3) \quad p^{(n)}(x, y) = \int_{\mathbb{R}} p^{(n-1)}(x, z)p(z, y)dz.
\]

The function \(p(\cdot, \cdot) \) is called the density function of \(P \) with respect to \(\lambda \) and is only uniquely determined by \(P \) a.e. \((\lambda \times \lambda)\). All subsets of \(X \) discussed in this paper are elements of \(\mathcal{F} \) and all functions on \(X \) are \(\mathcal{F} \)-measurable functions. Unless otherwise indicated, for two sets \(A, B, A \subset B, A = B \) means that \(\lambda(A - B) = 0, \lambda(A \cap B) = 0 \) respectively, and for two functions \(f, g \) on \(X, f = g, f \leq g \) means that the equality and the inequality, respectively, are satisfied except on a \(\lambda \)-null set. For any set \(A, I_A \) is to represent the function which equals 1 on \(A \) and 0 on the complement \(A' \) of \(A \). \(I_A \) is the \(\lambda \)-measurable Markov operator defined by

\[
I_A f(x) = I_A(x)f(x),
\]

\[
vI_A(B) = v(A \cap B).
\]

For any set \(E \), define \(P_E \) by

\[
(1.4) \quad P_E = \sum_{n=0}^{\infty} P(I_E, P)^n
\]

where \(E' \) is the complement of \(E \). \(P_E \) operating on either non-negative functions or measures has well-defined meanings (cf. [8, §VI]). For a measure \(v \), and a function \(f \) we shall use the symbol \(\langle v, f \rangle \) to denote the integral \(\int f dv \). For any \(v \in \mathcal{A}^*(\lambda) \), the support of \(v \) is the set \(A \) such that \(v(X - A) = 0 \), and \(B \subset A \) with \(B \) being \(\lambda \) non-null implies that \(v(B) > 0 \), "non-null" and "null" shall mean \(\lambda \)-non-null and \(\lambda \)-null respectively.

Following E. Hopf and J. Feldman we call a set \(A \) a conservative set if for every non-null subset \(B \) of \(A, P_B 1_B = 1 \) on \(B \). The largest conservative set \(C \) is called the conservative part of \(X \). \(D = X - C \) is called the dissipative part of \(X \). \(P \) is conservative if \(X = C \), dissipative if \(X = D \). We say that a set \(A \) is closed if \(P1_A = 1 \) on \(A \). The collection of all closed subsets of \(C \) is a \(\sigma \)-algebra of subsets of \(C \) which we shall denote by \(\mathcal{C} \). An element \(A \) of \(\mathcal{C} \) is indecomposable if \(A \) is non-null and if the only closed subsets of \(A \) are null sets and \(A \) itself. A conservative operator \(P \) is ergodic if \(X \) is indecomposable or, equivalently, if the only elements of \(\mathcal{C} \) are \(X \) and the null set. In [8] it has been shown that, for a conservative \(\lambda \)-continuous
Markov operator P, the space X may be decomposed into at most countably many indecomposably closed sets C_1, C_2, \ldots, and that to each C_i, there is a non-trivial σ-finite P-invariant measure μ_i which is equivalent to λ_{C_i}, and every P-invariant measure is of the form $\sum \lambda_{C_i} \mu_i$. Thus, if we consider P acting on each C_i only, P is ergodic. In [8] we studied the convergence properties of the sequence $\{\sum_{n=1}^{N} p^n(z,x)/\sum_{n=1}^{N} p^n(z,y)\}$. It was proved that, for an ergodic conservative P, the sequence converges to the limit $f(x)/f(y)$ where f is the derivative of an invariant measure with respect to λ. In this paper we shall proceed further to study the asymptotic behavior of sequences $\{p^{(n)}(x,y)\}$ and $\{P^n f\}$. As we know that $\sum_{n=0}^{\infty} p^n(x,y)$ converges on $X \times D$, therefore, $\lim_{n \to \infty} p^n(x,y) = 0$ on $X \times D$. The limiting behavior of $\{p^{(n)}(x,y)\}$ is relatively simple on the dissipative part.

In [8], it is well known that, if X is discrete and if P is conservative and ergodic, then X may be partitioned into a finite number δ of cyclically moving sets where δ is the period of P, and $\{p^{\delta n}(x,y)\}$ converges as $n \to \infty$ [1]. Thus in §II, a theory of periods is developed for a λ-measurable, conservative and ergodic Markov operator. Much of the work here is inspired by the pioneer work of W. Doeblin. The theory of periods of a conservative ergodic λ-measurable Markov operator given here is modeled after Doeblin’s (which was perfected and completed by Chung [2]).

II. Periods of λ-measurable conservative ergodic Markov operators. We recall that the properties of a set in S being transient, conservative, closed, etc., were defined with reference to a λ-measurable Markov operator P. If there are more than one Markov operator these terminologies will be prefixed by “P-” or “Q-” to distinguish that the properties are referred to operator P or Q respectively. In this section attention will be paid mainly to iterations P^k of P.

LEMMA 2.1. Let k be a positive integer. Then, a set R is P-conservative if and
only if R is P^k-conservative; it follows that, if P is conservative, so is P^k and vice versa.

Proof. A non-null set R is P-conservative if and only if, for every non-null set $S \subset R$, $\sum_{n=0}^{\infty} P^n 1_S$ is unbounded [5]. Since $\sum_{n=0}^{\infty} P^n 1_S \leq \sum_{n=0}^{\infty} P^n 1_S$, R is P-conservative if R is P^k-conservative. Conversely, if a non-null set R is not P^k-conservative, then there is a non-null subset S of R for which $\sum_{n=0}^{\infty} P^n 1_S$ is bounded. It follows that $\sum_{n=0}^{\infty} P^n 1_S = \sum_{n=0}^{\infty} P^n 1_S$ is bounded so that $\sum_{n=0}^{\infty} P^n 1_S = \sum_{n=0}^{\infty} P^n 1_S$ is also bounded. Hence R is also not P-conservative.

All through §II we shall assume that P is conservative and ergodic. A P^k-closed set E is said to be P^k-decomposable if and only if there is a non-null P^k-closed subset B of E such that $E - B$ is also non-null. Since P^k is conservative, the collection of all P^k-closed sets is a σ-algebra; $C - B$ is then also P^k-closed. A P^k-closed set is P^k-indecomposable if it is not P^k-decomposable. Since P is assumed to be ergodic, X is P-indecomposable. In this section we shall study the decomposability of X under iterates of P. For an arbitrary set E we denote the set $[P^k 1_E = 1]$ by $A^k(E)$:

$$A^k(E) = [P^k 1_E = 1].$$

Then E is P^k-closed if and only if $E \subset A^k(E)$. It is easy to see that

1. $A^k(E_1) \subset A^k(E_2)$ if $E_1 \subset E_2$,
2. $A^k(E_1) \cap A^k(E_2)$ is null if $E_1 \cap E_2$ is null,
3. if $\{E_n\}$ is a finite or infinite sequence of sets, then

$$\bigcup_{n} A^k(E_n) \subset A^k \left(\bigcup_{n} E_n \right).$$

Denote $A^1(E)$ by $A(E)$, then we have

$$A^2(E) = A(A(E)), \quad A^3(E) = A(A^2(E)), \cdots.$$

Lemma 2.2. If E is P^k-closed, then $A(E)$ is also and $A(E)$ is P^k-decomposable or P^k-indecomposable according as E is P^k-decomposable or P^k-indecomposable. It follows that the lemma remains valid if we replace $A(E)$ by $A^j(E)$ where j is an arbitrary positive integer.

Proof. If E is P^k-closed then $E \subset A^k(E)$. Hence $A(E) \subset A(A^k(E)) = (A^k(A(E))$ and $A(E)$ is P^k-closed. If E is P^k-decomposable, $E = B \cup C$ where B and C are non-null, disjoint and P^k-closed, then $A(B)$ and $A(C)$ are P^k-closed and disjoint. $A(B)$ and $A(C)$ are non-null because $A^k(B)$ and $A^k(C)$ are non-null. Hence $A(E)$ is also P^k-indecomposable.

Now suppose that E is P^k-indecomposable, we shall show that $A(E)$ is also P^k-indecomposable. Let F be a non-null P^k-closed subset of $A(E)$, we shall first show $A^{k-1}(F) \cap E$ is non-null. We have
\[P^k 1_F = P_I^k P^{k-1} 1_F + P_I^k P^{k-1} 1_F. \]

Since \(F \subseteq A(E), P1_F = 0 \) on \(F \), hence \(P_I^k P^{k-1} 1_F = 0 \) on \(F \). Hence we have

(2.2) \[P^k 1_F = P_I^k P^{k-1} 1_F = 1 \text{ on } F. \]

Since \(P1 = 1 \), it follows that if \(f > 0 \) a.e. \((\lambda)\) we also have \(Pf > 0 \) a.e. \((\lambda)\). Now \(1 - I_E P^{k-1} 1_F \) is a non-negative function. If the set \([I_E P^{k-1} 1_F = 1]\) is null then \(P[1 - I_E P^{k-1} 1_F] = 1 - P_I E P^{k-1} 1_F > 0 \) a.e.\((\lambda)\) which contradicts (2.2). Hence \([I_E P^{k-1} 1_F = 1]\) is non-null, i.e., \(E \cap A^{k-1}(F) \) is non-null. Now suppose \(A(E) \) were \(P^k \)-decomposable and \(F_1, F_2 \) were two disjoint non-null \(P^k \)-closed subsets of \(A(E) \) then \(E \cap A^{k-1}(F_1) \) and \(E \cap A^{k-1}(F_2) \) would be two non-null, disjoint, \(P^k \)-closed subsets of \(E \) which is clearly impossible. Hence \(A(E) \) is also \(P^k \)-indecomposable.

Lemma 2.3. If \(P \) is conservative and ergodic, and if \(C_1, \ldots, C_n \) are \(P^k \)-closed, non-null and pairwise disjoint then \(n \leq k \).

Proof. Let \(G_m = \bigcup_{i=0}^{k-1} A_i(C_m) \), then

\[A(G_m) = \bigcup_{i=0}^{k-1} A^{i+1}(C_m) \supset G_m, \]

hence each \(G_m \) is \(P \)-closed. \(G_m = X \) for \(m = 1, \ldots, n \). Hence

(2.3) \[X = \bigcup_{m=1}^n G_m = \bigcup_{(i_1, i_2, \ldots, i_n)} [A^{i_1}(C_1) \cap A^{i_2}(C_2) \cap \cdots \cap A^{i_n}(C_n)]. \]

Where the union appearing in the right-hand side of (2.3) is taken over all \(n \)-tuple \((i_1, \ldots, i_n)\) where \(i_j \) may be \(1, 2, \ldots, k \). There is at least one \(n \)-tuple \((i_1, i_2, \ldots, i_n)\) for which \(A^{i_1}(C_1) \cap \cdots \cap A^{i_n}(C_n) \) is non-null. Then \(i_1, i_2, \ldots, i_n \) are all distinct, for \(i_j = i_i \) would imply that \(A^{i_1}(C_1) \cap A^{i_2}(C_2) \) is null. Hence \(n \leq k \).

Lemma 2.4. Let \(P \) be conservative and ergodic and \(k \) be a positive integer. Let \(\mathcal{C}^{(k)} \) be the \(\sigma \)-algebra of \(P^k \)-closed subsets of \(X \). Then \(\mathcal{C}^{(k)} \) is generated by a finite number \(\delta = \delta(k) \) of distinct atoms with \(\delta \) dividing \(k \). Each atom in \(\mathcal{C}^{(k)} \) is also \(P^\delta \)-indecomposably closed. It follows that \(\mathcal{C}^{(k)} \) is identical with the \(\sigma \)-algebra \(\mathcal{C}^{(\delta)} \) of all \(P^\delta \)-closed sets.

Proof. By Lemma 2.3 \(\mathcal{C}^{(k)} \) must be generated by a finite number of atoms. Let \(C_1 \) be an atom of \(\mathcal{C}^{(k)} \). \(C_1 \) is a \(P^\delta \)-indecomposable closed set. Let \(C_2 = A(C_1), C_3 = A(C_2), \ldots \). By Lemma 2.2 every \(C_i \) is also \(P^\delta \)-indecomposably closed. Hence, if \(i \neq j \) we have either \(C_i \cap C_j \) null or \(C_i = C_j \). Since \(C_i \) is \(P^k \)-closed, \(C_i \subseteq A^k(C_i) = C_{i+k} \). Hence \(C_i = C_{i+k} = C_{i+2k} = \cdots \). It then follows that if \(d \) is a positive integer for which there is an \(i \) such that \(C_i = C_{i+d} \), then \(C_i = C_{i+d} \) for every positive integer \(i \). Let \(\delta \) be the smallest of all positive integers \(d \) for which
$C_1 = C_1 + d$. Clearly $\delta \leq k$. δ must divide k for, if otherwise, then $k = n\delta + r$ where r is a positive integer $< d$, $C_{1+n\delta} = C_1 = C_1 + n\delta + r$, hence $C_1 = C_1 + r$, which contradicts the defining property of δ. Now for every i, $C_i = C_i + \delta = A^i(C_1)$, hence every C_i is P^δ-closed. Each C_i is also P^k-indecomposable since it is P^k-indecomposable. $C_1, C_2, \ldots, C_\delta$ are all distinct. $\bigcup_{i=1}^\delta C_i$ is P-closed, therefore is equal to X. $\{C_1, C_2, \ldots, C_\delta\}$ consists of all atoms of $\mathcal{G}^{(k)}$ and also of $\mathcal{G}^{(\delta)}$. Hence $\mathcal{G}^{(k)} = \mathcal{G}^{(\delta)}$.

Lemma 2.5. For any positive integer k, let $\delta(k)$ be the positive integer of Lemma 2.4. Then, if k_1, k_2 are two positive integers such that k_1 divides k_2, then $\delta(k_1)$ is equal to the greatest common divisor d of k_1 and $\delta(k_2)$.

Proof. By Lemma 2.4 $\delta(k_1)$ divides k_1. We shall show that $\delta(k_1)$ also divides $\delta(k_2)$. Then it follows that $\delta(k_1)$ divides d. Let C_1 be an atom of $\mathcal{G}^{(k_1)}$. $C_2 = A(C_1)$, $C_3 = A^2(C_1)$, \ldots. Then $C_1, \ldots, C_{\delta(k_1)}$ are the totality of distinct atoms of $\mathcal{G}^{(k_1)}$. Let us consider P^{k_1} acting on C_1 only. It is ergodic, conservative and $P^{k_1} = (P^k)^l$ where $l = k_2/k_1$. By Lemma 2.4 C_1 is decomposed into B_1, \ldots, B_j, P^{k_2}-indecomposable sets with $B_2 = A^{k_1}(B_1)$, $B_3 = A^{k_1}(B_2)$, \ldots. Then each C_i is decomposed into j P^{k_2}-closed sets $A^{i-1}(B_1), \ldots, A^{i-1}(B_j)$. Hence $\mathcal{G}^{(k_2)}$ has a totality of $j \cdot \delta(k_1)$ distinct atoms, i.e., $\delta(k_2) = j \cdot \delta(k_1)$. To prove that d divides $\delta(k_1)$, let D_1 be a P^{k_2}-indecomposable set. Let $D_2 = A(D_1)$, $D_3 = A^2(D_1)$, \ldots, then $D_1, \ldots, D_{\delta(k_2)}$ are all distinct whereas $D_{\delta(k_2) + i} = D_i$ for every couple of positive integers n, i. Let $q = \delta(k_2)/d$. Let $E_i = \bigcup_{n=0}^{q-1} D_{n+d+i}$. Then $A^d(E_i) = E_i$ so that E_i is P^d-closed. Since d divides k_1, E_i is also P^{k_1}-closed. E_1, \ldots, E_d are all distinct, $A(E_1) = E_{i+1} + X = \bigcup_{i=1}^d E_i$. If E_1 is P^{k_1}-indecomposable, so are all other E_i. If E_1 is P^{k_1}-decomposable so are all other E_i and they may be decomposed into a same number of P^{k_1}-indecomposable sets. Hence d divides $\delta(k_1)$. Since we have already proved the fact that $\delta(k_1)$ divides d, $d = \delta(k_1)$.

For a λ-measurable conservative ergodic Markov operator P we define the period δ of P by

\[\delta = \sup \{\delta(k), k = 1, 2, \ldots\}. \]

The period δ of P may or may not be finite. If $\delta = 1$, P is said to be aperiodic. An aperiodic Markov operator is characterized by the property that all iterates of P are ergodic. If the period δ of a Markov operator P is finite then the restriction of P^δ to each P^δ-indecomposable set is aperiodic. It is well known that if the state space X is discrete then every conservative ergodic Markov operator has a finite period.

A sequence $\{C_n\}$ of sets in X shall be called a consequent sequence if C_1 is non-null and $C_n = A(C_{n+1})$ for $n = 1, 2, \ldots$. Then all sets in the sequence are non-null. If E is a P^δ-indecomposable closed set and $d = \delta(k)$ then

\[\{E, A^{d-1}(E), A^{d-2}(E), \ldots, E, A^{d-1}(E), A^{d-2}(E), \ldots, E, \ldots\} \]
is a consequent sequence. For a consequent sequence \(\{C_n\} \) we have \(C_n \subseteq \bigcup_{m=n+1}^{\infty} C_m \) for \(n = 1, 2, \ldots \) since \(\bigcup_{m=n+1}^{\infty} C_m \) is closed and, therefore, \(\bigcup_{m=n+1}^{\infty} C_m = X \). Hence for each \(C_n \), there is a \(C_m \) with \(m > n \) such that \(C_n \cap C_m \) is non-null (and therefore \(C_n \cap C_m \subseteq X(C_n \cap C_m) \)). To each \(\nu \in \mathcal{A}^+(\lambda) \), \(\nu \neq 0 \), we may attach a consequent sequence \(\{C_n(\nu)\} \) where \(C_1(\nu) = \text{supp} \nu \), \(C_2(\nu) = \text{supp} \nu P \), \(C_3(\nu) = \text{supp} \nu P^2 \), \ldots .

If \(\eta \) is absolutely continuous to \(\nu \) then \(C_n(\eta) \subseteq C_n(\nu) \) for every \(n \). We now define \(h(\nu) \) to be the greatest common divisor of all positive integers \(k \) for which there is an integer \(i_0 \) such that \(C_{n+i}(\nu) \neq 0 \). We note that \(h(\nu) \) divides \(h(\eta) \) if \(\eta \) is absolutely continuous to \(\nu P^n \) for some \(n \geq 0 \). Let

\[
(2.5) \quad H = \sup \{ h(\nu) : \nu \in \mathcal{A}^+(\lambda), \nu \neq 0 \}.
\]

\(H \) may be \(+\infty \) or a finite positive integer.

Theorem 2.1. \(H = \delta \).

Proof. Let \(k \) be an arbitrary positive integer and and \(E \) be a \(P^k \)-indecomposable closed set. Let \(\nu = \lambda_j E \). The sequence \(\{E, A^{(k)\nu-1}(E), \ldots , E, A^{(k)\nu-1}(E)\} \) is the consequent sequence of \(\nu \) and for this \(\nu \), \(h(\nu) = \delta(k) \). Hence \(H \geq \delta(k) \) for every positive integer \(k \). It follows that \(H \geq \delta \). To prove \(H \leq \delta \), let \(\nu \) be an arbitrary nonzero element of \(\mathcal{A}^+(\lambda) \) and let \(C_{n,i}(\nu) = \text{supp} \nu P^{n-1} \) for \(n = 1, 2, \ldots \) and \(h = h(\nu) \). Let \(E_i, i = 1, \ldots , h, \) be defined by

\[
(2.6) \quad E_i = \bigcup_{j=0}^{\infty} C_{i+jh}(\nu).
\]

Since \(C_{i+jh}(\nu) \subseteq A^h(C_{i+(j+1)h}) \), \(E_i \) are \(P^h \)-closed. If \(i_1 \neq i_2 \), \(E_{i_1} \cap E_{i_2} \) is null for if \(E_{i_1} \cap E_{i_2} \) is non-null, then, there are non-negative integers \(j_1, j_2 \) such that \(C_{i_1+jh}(\nu) \cap C_{i_2+jh}(\nu) \) is non-null. Then \(i_1 + j_1 h - (i_2 + j_2 h) = (i_1 - i_2) + (j_1 - j_2) h \) is divisible by \(h \). It follows that \(i_1 - i_2 \) is divisible by \(h \) which is impossible since \(|i_1 - i_2| < h \). Therefore, \(E_h \) constitute the totality of all \(P^h \)-indecomposable sets. Hence \(h = \delta(h) \leq \delta \). Hence \(H \leq \delta \).

For any nonzero measure \(\nu \in \mathcal{A}^+(\lambda) \) we shall define \(h'(\nu) \) to be the minimum of all positive integers \(k \) for which there is a positive integer \(N \) such that \(C_{N}(\nu) \cap C_{N+k}(\nu) \) is non-null. It is clear that \(h(\nu) \) divides \(h'(\nu) \). If \(\eta \) is absolutely continuous to \(\nu P^n \) for some \(n \geq 0 \) then \(h'(\eta) \geq h'(\nu) \). Let

\[
(2.7) \quad H' = \sup \{ h'(\nu) : \nu \in \mathcal{A}^+(\lambda), \nu \neq 0 \}.
\]

We always have \(H' \geq H \). For a general conservative ergodic \(\lambda \)-measurable Markov operator \(P \) it is possible to have \(H' > H \) as illustrated by the following example.

Let \(X \) be the set of all complex numbers of absolute value 1 and \(\lambda \) be the linear Lebesgue measure. Let \(\alpha = e^{ir\theta} \) where \(\theta \) is irrational and \(PF(x) = f(\alpha x) \). Then
P^n is ergodic for every positive integer n, so that P is aperiodic and $H = 1$ (cf. [6, p. 26]). Let v have, as its support, the set $[e^{i2\pi y}: 0 \leq y \leq \varepsilon]$ where ε is a positive number. Then vP^n has the set $[e^{i2\pi y}: n\theta \leq y \leq n\theta + \varepsilon]$ as its support. Let k be an arbitrary positive integer. Let $2\pi c$ be the minimum distance from the point 1 to $e^{i2\pi \theta_1}, e^{i4\pi \theta_2}, \ldots, e^{i2k\pi \theta}$. Then $c > 0$. Hence if $\varepsilon < c$ we have $h'(v) > k$. Hence $H' = \infty$.

Lemma 2.6. If H' is finite, then $H' = H = \delta$ and for every consequent sequence $\{E_n\}$ there is a positive integer N such that $E_n \cap E_{n+\delta}$ is non-null for every $n \geq N$.

Proof. If H' is finite, then H' is a positive integer and there is a nonzero measure $v_1 \in \mathcal{M}^+(\lambda)$ such that $h'(v_1) = H'$. Since $H' \geq H$, H is finite and there is a nonzero measure $v_2 \in \mathcal{M}^+(\lambda)$ such that $h(v_2) = H$. Since $C_1(v_2) \subset X = \bigcup_{n=1}^{\infty} C_n(v_1)$, there is an n such that $C_1(v_2) \cap C_n(v_1)$ is non-null. Let v be a nonzero measure which has $C_1(v_2) \cap C_n(v_1)$ as its support, then v is absolutely continuous to both v_2 and vP^{n-1}. Hence $h(v) \geq h(v_1)$, $h'(v) \geq h'(v_2)$. However, since $h(v) \leq H$, $h'(v) \leq H'$, $h(v) = H$, $h'(v) = H'$. Now consider the consequent sequence $\{C_n(v)\}$ of v. Let k be a positive integer such that there is an n for which $C_n(v) \cap C_{n+k}(v)$ is non-null. Then $H' \leq k$. Now, since $C_n(v) \cap C_{n+k}(v)$ is non-null we may choose a nonzero measure $\eta \in \mathcal{M}^+(\lambda)$ with $C_n(v) \cap C_{n+k}(v)$ as its support. Then η is absolutely continuous to vP^{n-1}. Hence $h'(\eta) \geq h'(v)$. It follows that $h'(\eta) = H'$ and there is a positive integer m such that $C_m(\eta) \cap C_m+H'(\eta)$ is non-null. But we have $C_m(\eta) \subset C_{m-1}+m(\eta) \cap C_{m-1}+m+h(\eta)$, $C_{m+H'}(\eta) \subset C_{m-1}+m+h(\eta) \cap C_{m-1}+m+h+H'(\eta)$. Hence $C_{m-1}+m(v) \cap C_{m-1}+m+h(\eta) \cap C_{m-1}+m+h+H'(\eta) \cap C_{m-1}+m+h+H'(\eta)$. It follows that $C_{m-1}+m+H'(\eta) \cap C_{m-1}+m+k(\eta)$ is non-null. Hence either $k - H' = 0$ or $k - H' \geq H'$. If $k - H' = 0$ then k is divisible by H'. If $k - H' \geq H'$, repeating the same argument for $k - H'$ as for k before, we conclude that $k - 2H'$ is either 0 or $\geq H'$. Repeating the same argument finitely many times we obtain the result $k - jH' = 0$. Hence k is divisible by H'. This is true for all positive integers k for which there is a positive integer n such that $C_n(v) \cap C_n+H(v)$ is non-null. Hence H' divides H. Hence $H' = H = \delta$. Now let $\{E_n\}$ be an arbitrary consequent sequence. Since $X = \bigcup_{n=1}^{\infty} E_n$, $C_1(v) \cap E_{n_0}$ is non-null for some positive integer n_0. Let $\zeta \in \mathcal{M}^+(\lambda)$ have $C_1(\zeta) \cap E_{n_0}$ as its support. Then $h'(\zeta) \geq h(\eta)$ so that $h'(\zeta) = h(\eta) = \delta$. There is a positive integer l such that $C_l(\zeta) \cap C_{l+\delta}(\eta)$ is non-null. It follows that $C_{\zeta}(\eta) \cap C_{n+\delta}(\zeta)$ is non-null for all $n \geq l$. Now we have, for every positive integer n, $C_n(\zeta) \subset E_{n_0} \cap E_{n_0+1+n}$. Hence $C_n(\zeta) \cap C_{n+\delta}(\zeta)$ being non-null implies that $E_{n_0-1+n} \cap E_{n_0-1+n+\delta}$ is non-null. Let $N = n_0 - 1 + l$. Then $E_n \cap E_{n+\delta}$ is non-null for all positive integers $n \geq N$.

Now we shall proceed to show that the period of a conservative, ergodic, λ-continuous Markov operator is always finite. To do this we shall choose a definite version of $p(x, y)$ for P to satisfy

1. $p(x, y) \geq 0$ for all $(x, y) \in X \times X$ and
2. $\int p(x, y)\lambda(dy) = 1$ for all $x \in X$.

Then the iterates \(p^{(n)}(x,y) \) given by (1.3) also satisfy 1 and 2. For each \(x \in X, E \in \mathcal{F} \) let
\[
v_x(E) = \int_E p(x,y) \lambda(dy).
\]

For each \(x \in X, v_x \) is a probability measure absolutely continuous to \(\lambda \) and for each fixed \(E \in X, x \) varying over \(X, v_x(E) \) is a version of \(P_1 E \).

Lemma 2.7. For a \(\lambda \)-continuous, conservative, ergodic Markov operator \(P, H' \) (defined by (2.7)) is finite.

Proof. If \(H' \) were infinite, then there would be a sequence \(\{ \eta_k \} \) of nonzero measures in \(\mathcal{M}^+(\lambda) \) such that \(\lim_{k \to \infty} H'(\eta_k) = + \infty \). Let \(\{ C_n(\eta_k) \} \) be the consequent sequence of \(\eta_k \). Sets \(C_n(\eta_k) \) are only unique up to sets of \(\lambda \) measure zero. Now we shall make a definite choice of sets \(C_n(\eta_k) \) to satisfy the condition that if \(x \in C_n(\eta_k) \) then \(v_x(C_{n+1}(\eta_k)) = 1 \). This can always be accomplished by replacing the original \(C_n(\eta_k) \) by its intersection with the set \(\{ x : v_x(C_{n+1}(\eta_k)) = 1 \} \). Since \(P_1 C_n(\eta_k) = 1 \) a.e. (\(\lambda \)) on \(C_n(\eta_k) \), the intersection remains a support of \(\eta_k P^n \). Now sets \(C_n(\eta_k) \) have this property: if \(x \in C_n(\eta_k) \), then \(v_x \) is absolutely continuous to \(\eta_k P^n \). Hence, if \(x \in \bigcup_{n=1}^{\infty} C_n(\eta_k) \) then \(H'(v_x) \geq H'(\eta_k) \).

Now let \(X_k = \bigcup_{n=1}^{\infty} C_n(\eta_k) \) in the strict sense of set union. Then \(\lambda(\bigcap_{k=1}^{\infty} X_k) = 0 \) so that \(\lambda(X - \bigcap_{k=1}^{\infty} X_k) = 0 \). There must be a point \(x \in \bigcap_{k=1}^{\infty} X_k \). For this \(x, H'(v_x) \geq H'(\eta_k) \) for \(k = 1, 2, \ldots \), which is impossible since \(H'(v_x) \) is a finite integer and \(\lim_{k \to \infty} H'(\eta_k) = + \infty \).

Combining Lemmas 2.7, 2.6, we have the following:

Theorem 2.2. If a Markov operator \(P \) is conservative, ergodic and \(\lambda \)-continuous, then the period \(\delta \) of \(P \) is a finite positive integer and for any consequent sequence \(\{ C_n \} \) there is a positive integer \(N \) such that \(C_n \cap C_{n+\delta} \) is non-null for all \(n \geq N \).

Theorem 2.3. Let \(P \) be a \(\lambda \)-continuous, conservative, ergodic Markov operator. Let \(\delta \) be the period of \(P \) and \(\mu \) be a non-null invariant measure of \(P \). Let \(C_0, C_1, \ldots, C_{\delta-1} \) be the totality of distinct \(\mathcal{G}^{(\delta)} \) atoms with \(C_0 = A(C_1), C_1 = A(C_2), \ldots, C_{\delta-2} = A(C_{\delta-1}) \). Then each \(I_C \mu \) is an invariant measure of \(P^\delta \) and every invariant measure of \(P^\delta \) is of the form \(\sum_{i=0}^{\delta-1} \alpha_i I_C \eta \). Furthermore, we have \(\mu I_{C_0} P = \mu I_{C_1} P, \ldots, \mu I_{C_{\delta-2}} P = \mu I_{C_{\delta-1}}, \mu I_{C_{\delta-1}} P = \mu I_0 \) and \(\mu (C_0) = \mu (C_1) = \cdots = \mu (C_{\delta-1}) \). Hence if \(P \) has a finite invariant measure then all invariant measures of iterates of \(P \) are finite measures.

Proof. Since \(C_i \) is \(P^\delta \)-closed, \(I_C P^\delta = I_C P^\delta I_C \). Since \(P^\delta \) is conservative, \(X - C_i \) is \(P^\delta \)-closed. Hence \(I_{X-C_i} P^\delta I_C = 0 \) and \(P^\delta I_C = I_C P^\delta I_C + I_{X-C_i} P^\delta I_C = I_C P^\delta I_C = I_C P^\delta \). Thus we have \(\mu I_C P^\delta = \mu P^\delta I_C = \mu I_C \) and \(\mu I_C \) is \(P^\delta \)-invariant.
\[\langle \mu I_{C_1}, f \rangle = \langle \mu I_{C_1} f \rangle = \langle \mu P, I_{C_1} f \rangle = \langle \mu I_{C_0} P, I_{C_1} f \rangle + \langle \mu I_{X-C_0} P, I_{C_1} f \rangle. \]

Since the support of \(\mu I_{C_0} P \) is \(C_0 \) and the support of \(\mu I_{X-C_0} P \) is \(X-C_1 \), we have

\[\langle \mu I_{C_0} P, I_{C_1} f \rangle = \langle \mu I_{C_0} P, f \rangle \]

and

\[\langle \mu I_{X-C_0} P, I_{C_1} f \rangle = 0. \]

Hence

\[\langle \mu I_{C_1}, f \rangle = \langle \mu I_{C_0} P, f \rangle. \]

Since (2.8) is true for every \(f \in L_\alpha(\mu) \), \(\mu I_{C_0} P = \mu I_{C_1} \). By the same argument, we have \(\mu I_{C_1} P = \mu I_{C_2}, \ldots, \mu I_{C_\delta-1} P = \mu I_{C_0} \). Substituting 1 for \(f \) in (2.8) we then obtain \(\mu(C_0) = \mu(C_1) \). Similarly \(\mu(C_1) = \mu(C_2), \ldots, \mu(C_{\delta-1}) = \mu(C_0) \).

Now every \(C_i \) is also a \(\mathcal{G}(n^\beta) \) atom for every positive integer \(n \). Hence \(P^n \) acting on \(C_i \) only is conservative and ergodic. It follows that for any \(P^n \)-invariant measure \(\nu, \nu I_{C_i} \) must be a constant multiple of \(\mu I_{C_i} \). Hence \(\nu \) is of the form \(\sum_{i=0}^{\delta-1} \alpha_i I_{C_i} \).

III. Asymptotic properties of \([p^n(x, y)] \) for a \(\lambda \)-continuous, conservative, ergodic Markov operator. All through this section, the Markov operator \(P \) is assumed to be \(\lambda \)-continuous, conservative and ergodic. Then \(P \) possesses a nontrivial \(\sigma \)-finite invariant measure \(\mu \) which is unique up to a constant multiple [8]. \(\mu \) is equivalent to \(\lambda \). Hence "a.e. (\(\lambda \))" is the same as "a.e. (\(\mu \))" and \(L_\alpha(\lambda) \) and \(L_\alpha(\mu) \) are the same space.

Lemma 3.1. If \(f \in L_q(\mu), 1 \leq q < \infty \), then \(Pf \), given by

\[Pf = Pf^+ - Pf^- , \]

belongs to \(L_q(\mu) \) also. Furthermore, we have

\[\| Pf \|_q \leq \| f \|_q \]

where \(\| \|_q \) denotes the \(L_q(\mu) \) norm.

Proof. We only need to prove for the case \(1 \leq q < \infty \). For any non-negative function \(f \), by Jensen's inequality, for (\(\lambda \)) almost all \(x \)

\[|Pf(x)|^q \leq \int p(x, y) |f(y)|^q \lambda(dy). \]

Hence

\[\int \mu(dx) |Pf(x)|^q \leq \int \mu(dx) \left\{ \int p(x, y) |f(y)|^q \lambda(dy) \right\} \]

\[= \int \mu(dy) |f(y)|^q. \]
Hence \(f \in L_q(\mu) \) implies that \(Pf \in L_q(\mu) \) and \(\| Pf \|_q \leq \| f \|_q \). Then for the general case that \(f \) may take on both positive and negative values and \(f \in L_q(\mu), Pf^+, Pf^- \) are in \(L_q(\mu) \) and, therefore, \(Pf \) is well defined and is in \(L_q(\mu) \). Jensen’s inequality again implies (3.1) and from which (3.2) and the equality \(\| Pf \|_q \leq \| f \|_q \) follow immediately.

Lemma 3.2. If \(f \) is non-negative and \(f \in L_q(\mu) \) where \(1 \leq q \leq +\infty \), then \(\lim\inf_{n \to \infty} Pf \) is equal to a finite constant a.e. \((\lambda)\). If, in addition, the invariant measure \(\mu \) is infinite and \(q < +\infty \), then \(\lim\inf_{n \to \infty} Pf = 0 \) a.e. \((\lambda)\).

Proof. Since \(f \) is non-negative, we have, by Fatou’s lemma,

\[
\lim\inf_{n \to \infty} \int p(x, y) Pf(y) \lambda(dy) = \int p(x, y) \lim\inf_{n \to \infty} Pf(y) \lambda(dy).
\]

Hence \(\lim\inf_{n \to \infty} Pf \leq \int \lim\inf_{n \to \infty} Pf \), so that \(\lim\inf_{n \to \infty} Pf \) is an excessive function. (A non-negative function \(g \) is excessive if \(Pf \leq f \). For the properties of excessive functions see [8, §IV].) Since excessive functions for a conservative, ergodic Markov operator are constant functions \(\lim\inf_{n \to \infty} Pf = \) constant a.e. \((\lambda)\). Since excessive functions for a conservative, ergodic Markov operator are constant functions, \(\lim\inf_{n \to \infty} Pf = \) constant a.e. \((\lambda)\).

Now we shall proceed to study asymptotic properties of sequences \(\{P^nf\} \). We shall again, as in §II, choose a definite version of the density function \(p(x, y) \) of \(P \) to satisfy

1. \(p(x, y) \geq 0 \) for all \((x, y) \in X \times X \) and
2. \(\int p(x, y) \lambda(dy) = 1 \) for all \(x \in X \).

The iterates \(p^{(n)}(x, y) \) will be given inductively by (1.3). They also satisfy 1 and 2. For every positive integer \(n \), every \(x \in X \) and \(E \in \mathcal{E} \) define

\[
(3.3) \quad v_x^{(n)}(E) = \int_E p^{(n)}(x, y) \lambda(dy).
\]

\(v_x^{(n)} \) are probability measures and \(v_x^{(n+1)} = v_x^{(n)} P \). Since \(P \) is ergodic the union of the supports of \(v_x^{(n)}, n = 1, 2, \ldots \), is \(X \). Now for every non-negative \(f \), \(P^nf(x) \) shall be given definitely by

\[
(3.4) \quad P^nf(x) = \int v_x^{(n)}(dy) f(y) = \int p^{(n)}(x, y) f(y) \lambda(dy).
\]

Let \(f \) be a fixed non-negative function which belongs to \(L_q(\mu) \) for some \(q \) satisfying \(1 \leq q \leq +\infty \). By Lemma 3.2 there is a non-negative number \(a \) such that

\[
\lim\inf_{n \to \infty} P^nf(x) = a
\]

for \((\lambda)\) almost all \(x \). Hence for \((\lambda)\) almost all \(x \) there is an increasing sequence \(\{n_i\} \).
(the sequence depends on \(x\)) of positive integers such that \(\lim_{i \to \infty} P^i f(x) = a\). Let \(\rho(x)\) be the supremum of all non-negative integers \(k\) with the property that there is an increasing sequence \(\{n_i\}\) of positive integers such that

\[
\lim_{i \to \infty} P^{(n_j + j)} f(x) = a \quad \text{for} \quad j = 0, \ldots, k.
\]

\(\rho(x)\) is defined for (\(\lambda\)) almost all \(x\) and \(0 \leq \rho(x) \leq +\infty\). We shall show that \(\rho(x) = +\infty\) for (\(\lambda\)) almost all \(x\).

Lemma 3.3. Let \(\eta\) be a probability measure, and let \(\{g_n\}\) be a sequence of \(\eta\)-integrable non-negative functions. If \(\liminf_{n \to \infty} g_n(\eta) \geq a\) a.e. (\(\eta\)) and \(\lim_{n \to \infty} \int g_n(\eta) = a\), then there is an increasing sequence \(\{n_i\}\) of positive integers such that \(\{g_n\}\) converges a.e. (\(\eta\)) to \(a\).

Proof. If \(a = 0\), then \(\{g_n\}\) converges to 0 in \(L_1(\eta)\), hence, there is a subsequence \(\{g'_n\}\) converging a.e. (\(\eta\)) to 0. Suppose \(a > 0\). We shall find an increasing sequence \(\{n_i\}\) of positive integers such that

\[
\eta(F_i) \leq \frac{2 + a}{2^i} \quad \text{for} \quad i \text{ sufficiently large}
\]

where

\[
F_i = \left\{ x : g_{n_i}(x) \geq a + \frac{1}{2^i} \right\}.
\]

(3.5) implies

\[
\limsup_{i \to \infty} g_{n_i} \leq a \quad \text{a.e. (\(\eta\)).}
\]

(3.6) and the fact that \(\liminf_{i \to \infty} g_{n_i} \geq a\) imply \(\lim_{i \to \infty} g_{n_i} = a\) a.e. (\(\eta\)).

Now there is an increasing sequence \(\{n_i\}\) of positive integers satisfying the following two conditions for every \(i\):

1. \(\int g_{n_i} d\eta < a + 1/4^i\),
2. \(\eta[n_{i-1}] < 1/4^i\).

Then, if \(a - 1/4^i \geq 0\), we have

\[
a + \frac{1}{4^i} > \int g_{n_i} d\eta = \int_{\{\eta_{n_i} > a + 1/4^i\}} g_{n_i} d\eta + \int_{\{\eta_{n_i} > a - 1/4^i\}} g_{n_i} d\eta + \int_{\{\eta_{n_i} < a - 1/4^i\}} g_{n_i} d\eta
\]

\[
\geq \left(a + \frac{1}{2^i} \right) \eta(F_i) + \left(a - \frac{1}{4^i} \right) \eta \left[a + \frac{1}{2^i} > g_{n_i} > a - \frac{1}{4^i} \right]
\]

\[
\geq \left(a + \frac{1}{2^i} \right) \eta(F_i) + \left(a - \frac{1}{4^i} \right) \left\{ \eta \left[a + \frac{1}{2^i} > g_{n_i} \right] - \frac{1}{4^i} \right\}
\]

\[
= \left(a + \frac{1}{2^i} \right) \eta(F_i) + \left(a - \frac{1}{4^i} \right) \left[1 - \eta(F_i) - \frac{1}{4^i} \right]
\]

\[
= \frac{2 + \frac{1}{4^i}}{\eta(F_i)} + \left(a - \frac{1}{4^i} \right) \left(1 - \frac{1}{4^i} \right).
\]
Hence \(n(F_j) < (2 + a)/2^j \).

The following lemma is a slight improvement of Lemma 3.3. The proof is trivial.

Lemma 3.3'. Let \(\eta \) be a probability measure, and let \(\{g_n^{(j)}\}, j = 0, 1, \ldots, k, \) be \(k + 1 \) sequences of \(\eta \)-integrable, non-negative functions. If \(\liminf_{n \to \infty} g_n^{(j)} \geq a \) a.e. \((\eta) \) and \(\lim_{n \to \infty} \int g_n^{(j)} d\eta = a \) for \(j = 0, 1, \ldots, k, \) then there is an increasing sequence \(\{n_i\} \) of positive integers such that \(\lim_{i \to \infty} g_{n_i}^{(j)} = a \) a.e. \((\eta) \) for \(j = 0, 1, \ldots, k. \)

In what follows \(f \) shall be a fixed non-negative function in \(L_q(\mu) \), and \(a \) is equal to \(\liminf_{n \to \infty} P^n f \) a.e. \((\lambda) \). Since \(P^n f, m = 1, 2, \ldots, \) are also in \(L_q(\mu) \), there is a set \(E_0 \) of 0 \(\lambda \)-measure such that, for every \(x \notin E_0 \), we have, simultaneously,

1. \(\liminf_{n \to \infty} P^n f(x) = a \),
2. \(P^n f(x) \) is finite for \(m = 1, 2, \ldots \). 2 is the same as,
2'. \(f \) is \(v_x^{(m)} \)-integrable for \(m = 1, 2, \ldots \), where \(v_x^{(m)} \) is given by (3.3).

Lemma 3.4. Let \(x_0 \) be a point of \(X - E_0 \). If \(\{n_i\} \) is an increasing sequence of positive integers such that \(\lim_{i \to \infty} P^{n_i+j} f(x_0) = a \) for \(j = 0, 1, \ldots, k, \) then for every positive integer \(m \) there is a subsequence \(\{n_{i_j}\} \) of \(\{n_i\} \) such that

\[
\lim_{i \to \infty} P^{n_{i_j}+j} f(x) = a \quad \text{for } j = 0, 1, \ldots, k
\]

for \((\lambda) \) almost all \(x \) on the support of the probability measure \(v_x^{(m)} \).

Proof. Since

\[
P^{n_i+j} f(x_0) = \int P^{n_i-m+j} f d\nu_x^{(m)},
\]

we have

\[
\lim_{i \to \infty} \int P^{n_i-m+j} f d\nu_x^{(m)} = a \quad \text{for } j = 0, 1, \ldots, k.
\]

Since \(\liminf_{i \to \infty} P^{n_i-m+j} f \geq a \) a.e. \((v_x^{(m)}) \), Lemma 3.3' is applicable. Hence there exists a subsequence \(\{n_{i_j}\} \) of \(\{n_i\} \) such that for \((\lambda) \) almost all \(x \) on the support of \(v_x^{(m)} \) we have

\[
\lim_{i \to \infty} P^{n_{i_j}+j} f(x) = a \quad \text{for } j = 0, 1, \ldots, k.
\]

Lemma 3.5. If, for some \(x \in X - E_0 \), \(\rho(x) \geq k \), then \(\rho(x) \geq k \) for \((\lambda) \) almost all \(x \).

Proof. If \(\rho(x_0) \geq k \) where \(x_0 \in X - E_0 \), then there is an increasing sequence \(\{n_i\} \) of positive integers such that \(\lim_{i \to \infty} P^{n_i+j} f(x_0) = a \) for \(j = 0, 1, \ldots, k. \) By Lemma 3.3, \(\rho(x) \geq k \) for \((\lambda) \) almost all \(x \) belonging to the support of the measure \(v_x^{(m)} \). Let the support of \(v_x^{(m)} \) be \(C_m \). \{\{C_m\}\} is a consequent sequence. Hence \(\lambda(X - \bigcup_{m=1}^{\infty} C_m) = 0. \) Now \(\rho(x) \geq k \) for \((\lambda) \) almost all \(x \) in \(\bigcup_{m=1}^{\infty} C_m. \) Hence the lemma is proved.
Lemma 3.6. If P is aperiodic, then for every non-negative integer k, there is an $x_0 \in X - E_0$ for which $\rho(x_0) \geq k$.

Proof. The lemma is obviously true for $k = 0$. Suppose the lemma is true for k. There is an $x_0 \in X - E_0$ and an increasing sequence $\{n_i\}$ of positive integers for which

$$\lim_{i \to \infty} P^{n_i + j} f(x_0) = a \quad \text{for} \quad j = 0, 1, \ldots, k.$$

Let C_m be the support of the measure $\nu_{x_0}^{(m)}$. $\{C_m\}$ is a consequent sequence. Since P is aperiodic, by Theorem 2.2, there is a positive integer N such that $C_N \cap C_{N+1}$ is non-null. By Lemma 3.4 there is a subsequence $\{n'_i\}$ of $\{n_i\}$ for which we have, simultaneously, $\lim_{i \to \infty} P^{n'_i + j} f(x) = a$, $j = 0, 1, \ldots, k$, for (λ) almost all x in C_N and $\lim_{i \to \infty} P^{n'_i - N - 1 + j} f(x) = a$, $j = 0, 1, \ldots, k$ for (λ) almost all x in C_{N+1}. Since $C_N \cap C_{N+1}$ is non-null, there is a point y in $C_N \cap C_{N+1}$ and $y \notin E_0$ such that

$$\lim_{i \to \infty} P^{n'_i - N + j} f(y) = a \quad \text{and} \quad \lim_{i \to \infty} P^{n'_i - (N+1) + j} f(y) = a$$

for $j = 0, 1, \ldots, k$. Hence we have

$$\lim_{i \to \infty} P^{n'_i - N + j} f(y) = a \quad \text{for} \quad j = 0, 1, \ldots, k + 1.$$

Therefore $\rho(y) \geq k + 1$ and the lemma is proved.

Lemma 3.7. If P is aperiodic, then for (λ) almost all x and for every positive integer k, there is an increasing sequence $\{n_i\}$ of positive integers for which

$$\lim_{n \to \infty} P^{n + j} f(x) = a \quad \text{for} \quad j = 0, 1, \ldots, k.$$

In other words, $\rho(x) = \infty$, for (λ) almost all x.

Proof. It follows from Lemma 3.5 and Lemma 3.6 that for every positive integer k, $\rho(x) \geq k$ for (λ) almost all x. Hence $\rho(x) = \infty$ for (λ) almost all x.

Lemma 3.8. If P is aperiodic and λ is a finite measure, then, for every positive number ε, there is a set A with $\lambda(X - A) < \varepsilon$ and an increasing sequence $\{n_i\}$ of positive integers such that the sequence of functions:

$$P^{n_0} f, P^{n_1} f, P^{n_1 + 1} f, P^{n_2} f, P^{n_2 + 1} f, P^{n_3} f, P^{n_3 + 2} f, \ldots$$

converges uniformly to a on A where $a = \lim_{n \to \infty} P^nf$.

Proof. Let x_0 be a point of $X - E_0$ for which $\rho(x_0) = \infty$, and let C_n be the support of $\nu_{x_0}^{(n)}$. Then $\lambda(X - \bigcup_{n=1}^{\infty} C_n) = 0$ and, hence, there is a positive integer b such that $\lambda(X - \bigcup_{n=1}^{b} C_n) < \varepsilon/2$. Let $B = \bigcup_{n=1}^{b} C_n$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Since \(p(x_0) = \infty \), for every positive integer \(k \), there is an increasing sequence \(\{n_i^{(k)}\} \) of positive integers such that

\[
\lim_{i \to \infty} P^{n_i^{(k)} + 1}(x_0) = a, \ldots, \lim_{i \to \infty} P^{n_i^{(k)} + k}(x_0) = a.
\]

Applying Lemma 3.4 repeatedly for \(b \) times, we obtain a subsequence \(\{m_i^{(k)}\} \) of \(\{n_i^{(k)}\} \) such that, for every integer \(m \), \(1 \leq m \leq b \),

\[
\lim_{i \to \infty} P^{m_i^{(k)} - m + 1}(x) = a, \ldots, \lim_{i \to \infty} P^{m_i^{(k)} - m + k}(x) = a
\]

for \((\lambda)\) almost all \(x \) on \(C_m \). Let \(k \geq b \). Then

\[
\lim_{i \to \infty} P^{m_i^{(k)}}(x) = a, \quad \lim_{i \to \infty} P^{m_i^{(k)} + 1}(x) = a, \ldots, \lim_{i \to \infty} P^{m_i^{(k)} + (k - b)}(x) = a
\]

for \((\lambda)\) almost all \(x \) on \(B \). Let \(l_i^k = m_i^{(k + b)} \). Then for every non-negative integer \(k \), the sequence \(\{l_i^{(k)}\} \) has the property that

\[
\lim_{i \to \infty} P^{l_i^{(k)}}(x) = a, \quad \lim_{i \to \infty} P^{l_i^{(k)} + 1}(x) = a, \ldots, \lim_{i \to \infty} P^{l_i^{(k)} + k}(x) = a
\]

for \((\lambda)\) almost all \(x \) on \(B \). Now, for every non-negative integer \(k \), let \(n_k \) be a member of the sequence \(\{l_i^{(k)}\} \) such that

\[
\lambda \left(B \cap \left(\left| P^{n_k} f - a \right| > \frac{1}{2^k} \right) \cup \left(\left| P^{n_k + 1} f - a \right| > \frac{1}{2^k} \right) \cup \cdots \right. \\
\left. \cup \left(\left| P^{n_k + k} f - a \right| > \frac{1}{2^k} \right) \right) < \frac{1}{2^k}.
\]

Then the sequence of functions:

\[
P^{n_0} f, P^{n_1} f, P^{n_1 + 1} f, P^{n_2} f, P^{n_2 + 1} f, P^{n_2 + 2} f, \ldots
\]

converges to \(a \) a.e. \((\lambda)\) on \(B \). By Egoroff's theorem, there is a subset \(A \) of \(B \) such that \(\lambda(B - A) < \varepsilon/2 \) and the sequence (3.7) converges uniformly to \(a \) on \(A \).

The following lemma follows immediately from Lemma 3.8.

Lemma 3.9. If \(P \) is aperiodic, then, for every positive number \(\varepsilon \), there is an increasing sequence \(\{n_i\} \) of positive integers such that the set

\[
E = \bigcap_{i=1}^{\infty} \bigcap_{k=0}^{i} \left[P^{n_i + k} f < a + \varepsilon \right]
\]

has positive \(\lambda \) measure.

Lemma 3.10. If \(E \) is a set of positive \(\lambda \) measure, then \(\lim_{n \to \infty} (I_{E'} P)^* 1 = 0 \) a.e. \((\lambda)\) where \(E' = X - E \).

Proof. Let \(v \in \mathcal{A}^+(\lambda) \). Then
\[v(X) = vP^n(X) = \langle vP^n, 1 \rangle \]

\[= \langle v \sum_{k=0}^{n-1} (I_{E,P})^k I_A, 1 \rangle + \langle (I_{E,P})^n, 1 \rangle \]

\[= \langle v \sum_{k=0}^{n-1} (I_{E,P})^k I_A, 1 \rangle + v(I_{E,P})^n(X) \]

\[= \langle v \sum_{k=0}^{n-1} (I_{E,P})^k I_A \rangle + v(I_{E,P})^n(X). \]

Since \(E \) is conservative and \(P \) is ergodic, we have

\[\lim_{n \to \infty} \sum_{k=0}^{n-1} (I_{E,P})^k I_E = 1 \text{ a.e. (}\lambda) \]

Hence

(3.9) \[\lim_{n \to \infty} v(I_{E,P})^n(X) = 0. \]

Setting \(v = v_x^{(1)} \) in (3.9), we obtain \(\lim_{n \to \infty} P(I_{E,P})^n 1(x) = 0 \). Hence \(\lim_{n \to \infty} (I_{E,P})^n = 0 \text{ a.e. (}\lambda) \).

We recall that the invariant measure \(\mu \) for \(P \) may be finite or infinite. We shall first study the case that \(\mu \) is finite. \(\mu \) is then always normalized to be a probability measure.

Lemma 3.11. If the invariant measure \(\mu \) of \(P \) is finite, then, for every \(v \in \mathcal{A}^+(\lambda) \), the measures \(v, vP, vP^2, \ldots \) are uniformly absolutely continuous with respect to \(\mu \).

Proof. Let \(Q \) be the \(\mu \)-reverse of \(P \). \(Q \) is a \(\mu \)-measurable Markov operator characterized by the following equality

\[\int (Pg)h \, d\mu = \int g(Qh) \, d\mu \]

where \(g, h \) are non-negative functions (cf. [8, §VI]). Let \(g = dv/d\mu \), then \(Q^*g = dvP^n/d\mu \). Construct the infinite product space \(\Omega = \prod_{n=0}^{\infty} X_n \) and the product \(\sigma \)-algebra \(\mathcal{F} = \prod_{n=0}^{\infty} \mathcal{F}_n \) of subsets of \(\Omega \) where \(X_n = X, \mathcal{F}_n = \mathcal{F} \) for \(n = 0,1,2,\ldots \). A probability measure \(\mu \) on \(\mathcal{F} \) is then defined by

\[\mu[X_0 \in A_0, X_1 \in A_1, \ldots, X_n \in A_n] \]

\[= \int_{A_0} \mu(dx_0) \int_{A_1} \lambda(dx_1) \ldots \int_{A_n} \lambda(dx_n) p(x_0, x_1)p(x_1, x_2) \ldots p(x_{n-1}, x_n) \]

where \(A_i \in \mathcal{F} \) for \(i = 0,1,\ldots,n \). Coordinates \(X_0, X_1, \ldots \), considered as random variables defined on \(\Omega \), constitute a stationary Markov process. \(Q^*g(X_n) \) is then
the conditional expectation of \(g(X_0) \) given random variables \(X_n, X_{n+1}, \cdots \). By the well-known martingale convergence theorem \(\{Q^n g(X_n)\} \) converges in \(L_1(\mu) \) and \(Q^n g(X_n) \) are uniformly \(\mu \)-integrable. Since the process is stationary, every \(X_n \) has \(\mu \) as its distribution, hence

\[
\int_{\{Q^n g \geq \varepsilon\}} Q^n g d\mu = \int_{\{Q^n g(X_n) \geq \varepsilon\}} Q^n g(X_n) d\mu.
\]

It follows that the functions \(Q^n g \) are uniformly \(\mu \)-integrable. Hence the measures \(\nu P^n \) are uniformly absolutely continuous with respect to \(\mu \).

Theorem 3.1. If \(P \) is a \(\lambda \)-continuous, conservative, ergodic and aperiodic Markov operator whose invariant \(\mu \) is finite (\(\mu \) is then normalized), then, for every \(f \in L_\infty(\mu) \), \(\{P^n f\} \) converges a.e. (\(\lambda \)) to \(\int f d\mu \).

Proof. If the theorem is true for non-negative functions then, applying the result to \(f^+ \), \(f^- \), we obtain the same conclusion for a function \(f \) which takes on both positive and negative values. So we shall only prove the theorem for a non-negative \(f \). Let us assume \(f \neq 0 \) a.e. (\(\lambda \)).

By Lemma 3.2 \(\lim_{n \to \infty} P^n f \) is equal to a constant \(a \) a.e. (\(\mu \)). Let \(\varepsilon \) be an arbitrary positive number. By Lemma 3.9, there is an increasing sequence \(\{n_i\} \) of positive integers such that the set \(E \) given by (3.8) has positive \(\lambda \) measure. Let \(x_0 \) be an arbitrary point of \(X \) and \(\nu_{x_0}^{(m)} \) be given by (3.3). Then

\[
P^{m+n_i+i} f(x_0) = \int P^{n_i+i} f d\nu_{x_0}^{(m)}
\]

\[
= \int \left[\sum_{k=0}^{i-1} (I_{E'} P)^k I_E P^{n_i+i-k} f + (I_{E'} P)^i P^{n_i} f \right] d\nu_{x_0}^{(m)}
\]

\[
\leq (a + \varepsilon) \int_{k=0}^{i-1} (I_{E'} P)^k I_E d\nu_{x_0}^{(m)} + \int (I_{E'} P)^i 1 d\nu_{x_0}^{(m)}
\]

\[
\leq (a + \varepsilon) + \int (I_{E'} P)^i 1 d\nu_{x_0}^{(m)}.
\]

By Lemma 3.10 \(\lim_{i \to \infty} (I_{E'} P)^i 1 = 0 \) a.e. (\(\mu \)). Hence, for every positive integer \(\delta \), there is an integer \(i_0 \) and a set \(A \) with \(\mu(X - A) < \delta \) such that \((I_{E'} P)^{i_0} 1 < \varepsilon \) on \(A \). The number \(\delta \) is chosen to satisfy the condition that \(\nu_{x_0}^{(m)}(F) < \varepsilon \) for \(m = 1, 2, \cdots \) whenever \(\mu(F) < \delta \). This can be done because \(\nu_{x_0}^{(1)}, \nu_{x_0}^{(2)}, \cdots \) are uniformly absolutely continuous with respect to \(\mu \) (Lemma 3.11). Hence for any positive integer \(m \),

\[
P^{m+n_i+i_0} f(x_0) \leq (a + \varepsilon) + \int_A (I_{E'} P)^{i_0} 1 d\nu_{x_0}^{(m)} + \nu_{x_0}^{(m)}(X - A)
\]

\[
\leq a + 3\varepsilon.
\]

Hence we have

\[
\limsup_{n \to \infty} P^n f(x_0) \leq a + 3\varepsilon.
\]
Since ε is an arbitrary positive number,

$$
\limsup_{n \to \infty} P^n f(x_0) \leq a.
$$

(3.11) holds for every $x_0 \in X$, hence $\lim_{n \to \infty} P^n f = a$ a.e. (\lambda). Since μ is the normalized invariant measure of P, $\int P^n f \, d\mu = \int f \, d\mu$ for $n = 1, 2, \ldots$. Now $\lim_{n \to \infty} \int P^n f \, d\mu = a$, hence $\int f \, d\mu = a$ and the proof of the theorem is then complete.

Theorem 3.2. If P is a λ-continuous, conservative, ergodic and aperiodic Markov operator whose invariant measure μ is finite, and if $f \in L_q(\mu)$, where $1 \leq q < \infty$, then the sequence $\{P^n f\}$ converges in L_q to $\int f \, d\mu$.

Proof. If $g \in L_\infty(\mu)$, by Theorem 3.1, $\{P^n g\}$ converges a.e. (μ) to $\int g \, d\mu$. Hence $\{P^n g\}$ converges to $\int g \, d\mu$ in $L_q(\mu)$. Since $L_\infty(\mu)$ is dense in $L_q(\mu)$ in the sense of L_q norm, we have, for every $f \in L_q(\mu)$ and every $\varepsilon > 0$, a $g \in L_\infty(\mu)$ such that $\|f - g\|_q < \varepsilon/2$ and $|\int f \, d\mu - \int g \, d\mu| < \varepsilon/2$. By Lemma 3.1, $\|P^n(f - g)\|_q \leq \|f - g\|_q$, hence

$$
\begin{align*}
\|P^n f - \int f \, d\mu\|_q &\leq \|P^n(f - g)\|_q + \|P^n g - \int g \, d\mu\|_q + \left|\int f \, d\mu - \int g \, d\mu\right| \\
&\leq \frac{\varepsilon}{2} + \|P^n g - \int g \, d\mu\|_q + \frac{\varepsilon}{2}.
\end{align*}
$$

Therefore $\limsup_{n \to \infty} \|P^n f - \int f \, d\mu\|_q \leq \varepsilon$ and the conclusion of the theorem follows.

Theorem 3.3. If P is a λ-continuous, conservative, ergodic and aperiodic Markov operator whose invariant measure μ is finite and if $f \equiv 0$ and $f \in L_1(\mu)$, then $\liminf_{n \to \infty} P^n f = \int f \, d\mu$ a.e. (μ).

Proof. Let x be a fixed point of X and $\psi_x^{(m)}$ be given by (3.3). Let ε be an arbitrary positive number. Since $\psi_x^{(m)}$, $m = 1, 2, \ldots$, are uniformly absolutely continuous to μ by Lemma 3.11, there is a positive number δ such that $\mu(E) < \delta$ implies $\psi_x^{(m)}(E) < \varepsilon$ for $m = 1, 2, \ldots$. Now, by Theorem 3.2, $\{P^n f\}$ converges in $L_1(\mu)$ to $\int f \, d\mu$, hence there is an integer n_0 such that $\mu[P^n f < \int f \, d\mu - \varepsilon] < \delta$. Hence for any positive integer m

$$
P^{m+n_0} f(x) = \int \psi_x^{(m)}(dy) P^{n_0} f(y)
$$

$$
\leq \int_{\{P^n f < \int f \, d\mu - \varepsilon\}} \psi_x^{(m)}(dy) P^{n_0} f(y)
$$

$$
\leq \psi_x^{(m)} \left[P^n f \geq \int f \, d\mu - \varepsilon \right] \left(\int f \, d\mu - \varepsilon\right)
$$

$$
\leq (1 - \varepsilon) \left(\int f \, d\mu - \varepsilon\right).
$$
Hence \(\liminf_{n \to \infty} P^n f(x) \geq \int f \, d\mu \). But by Fatou’s lemma

\[
\int \liminf_{n \to \infty} P^n f \, d\mu \leq \liminf_{n \to \infty} \int P^n f \, d\mu = \int f \, d\mu.
\]

Hence

\[
\liminf_{n \to \infty} P^n f = \int f \, d\mu \text{ a.e.} \ (\mu).
\]

Theorem 3.4. Let \(P \) and \(\mu \) be as in Theorem 3.3. Then, for (\(\lambda \)) almost all \(x \) \{\(p^{(n)}(x, \cdot) \)\} converges in \(L_1(\lambda) \) to \(d\mu/d\lambda \), and \{\(p^{(n)}(x, y) \)\} converges to \(d\mu(y)/d\lambda \) in \(L_1(\nu \times \lambda) \) for any \(\nu \in \mathcal{M}^+(\lambda) \). We also have \(\liminf_{n \to \infty} p^{(n)}(x, y) = d\mu/d\lambda(y) \) for (\(\lambda \times \lambda \)) almost all \((x, y)\).

Proof. Define \(\tilde{p}^{(n)}(x, y) \) by

\[
(3.12) \quad \tilde{p}^{(n)}(x, y) = p^{(n)}(x, y) \frac{d\lambda}{d\mu}(y)
\]

and \(\tilde{p}(x, y) = \tilde{p}^{(1)}(x, y) \). Then \(\tilde{p}^{(n)}(x, y) \) is the density function of \(P^n \) with respect to the invariant measure \(\mu \), and we have for (\(\mu \)) almost all \(x \)

\[
\int \tilde{p}(x, y) \mu(dy) = 1,
\]

and also for (\(\mu \)) almost all \(y \),

\[
\int \tilde{p}(x, y) \mu(dx) = 1.
\]

\(\tilde{p}(\cdot, \cdot) \) is “doubly stochastic.” Let \(Q \) be the \(\mu \)-reverse of \(P \). Then (3.10) implies that for every non-negative function \(h \)

\[
Qh(y) = \int \tilde{p}(x, y)h(x) \mu(dx).
\]

Thus, \(Q \) is \(\mu \)-continuous. Let \(q^{(n)}(x, y) \) be the density function of \(Q^n \) with respect to \(\mu \). Then

\[
q^{(n)}(x, y) = \tilde{p}^{(n)}(y, x).
\]

Since \(P \) is conservative, so is \(Q \) [5, Theorem 3.1]. Since a \(Q \)-closed set is also \(P \)-closed [8, Lemma 7.2], \(Q \) is ergodic. Since the same relationship holds between \(P^n \) and \(Q^n \) as \(P \) and \(Q \), \(Q \) is also aperiodic. Now, let \(x \) be fixed and let us consider \(\tilde{p}(x, \cdot) \) as a function of the second variable alone. Thus for (\(\mu \)) almost all \(x \), \(\tilde{p}(x, \cdot) \) is an element of \(L_1(\mu) \) with its \(\mu \)-integral equal to 1. We also have

\[
Q^n \tilde{p}(x, \cdot) = \tilde{p}^{(n+1)}(x, \cdot).
\]

Applying Theorem 3.3 to \(Q \) and \(\tilde{p}(x, \cdot) \) we have

\[
\liminf \tilde{p}^{(n)}(x, y) = 1
\]
for \((\mu \times \mu)\) almost all \((x, y)\). Hence it follows that

\[
\lim \inf p^{(n)}(x, y) = \frac{d\mu}{d\lambda}(y)
\]

for \((\lambda \times \lambda)\) almost all \((x, y)\). Furthermore, applying Theorem 3.2, we have, for \((\mu)\) almost all all \(x\), \(\{\hat{p}^{(n)}(x, \cdot)\}\) converges in \(L_1(\mu)\) to 1. Now

\[
\int |\hat{p}^{(n)}(x, y) - 1| \mu(dy) = \int \left| p^{(n)}(x, y) - \frac{d\mu}{d\lambda}(y) \right| \lambda(dy),
\]

hence \(\{p^{(n)}(x, \cdot)\}\) converges in \(L_1(\lambda)\) to \(d\mu/d\lambda\). Now, let

\[
g_n(x) = \int \left| p^{(n)}(x, y) - \frac{d\mu}{d\lambda}(y) \right| \lambda(dy) = \int |\hat{p}^{(n)}(x, y) - 1| \mu(dy),
\]

\(\{g_n(x)\}\) converges to 0 a.e. \((\mu)\). We also have

\[
g_n(x) \leq \int \hat{p}^{(n)}(x, y) \mu(dy) + 1 = 2.
\]

Hence \(\{g_n(x)\}\) converges to 0 in \(L_1(\nu)\) for any \(\nu \in \mathcal{M}^+(\lambda)\). Hence

\[
\int \int \left| p^{(n)}(x, y) - \frac{d\mu}{d\lambda}(y) \right| \lambda(dy) \nu(dx) \to 0
\]

and \(\{p^{(n)}(x, y)\}\) converges to \(d\mu(y)/d\lambda\) in \(L_1(\nu \times \lambda)\).

Theorem 3.5. Let \(P\) be a \(\lambda\)-continuous, conservative and ergodic Markov operator whose nontrivial invariant measure \(\mu\) is finite \((\mu\) is normalized as usual). Let the period of \(P\) be \(\delta\) and \(C_0, C_1, \ldots, C_{\delta - 1}\) be the totality of distinct \(G^{(0)}\) atoms with \(C_0 = A(C_1), \ldots, C_{\delta - 2} = A(C_{\delta - 1})\). Let \(f \in L_1(\mu)\) and \(c_0, c_1, \ldots\) be defined by

\[
c_i = \delta \int_{C_i} f \, d\mu \quad \text{for } i = 0, \ldots, \delta - 1,
\]

\[
c_i = c_j \quad \text{if } i \geq \delta, \quad 0 \leq j \leq \delta - 1.
\]

Then

1. if \(f\) also belongs to \(L_\infty(\mu)\), then for every non-negative integer \(k\) the sequence \(\{P^{n+k}f\}\) converges to \(\sum_{i=0}^{\delta-1} c_{i+k}1_{C_i}\) a.e. \((\lambda)\),

2. if \(f\) belongs to \(L_q(\mu)\) where \(1 \leq q < \infty\), then for every non-negative integer \(k\) the sequence \(\{P^{n+k}f\}\) converges in \(L_q(\mu)\) to \(\sum_{i=0}^{\delta-1} c_{i+k}1_{C_i}\),

3. if \(f \geq 0\), then for every non-negative integer \(k\),

\[
\lim \inf_{n \to \infty} P^{n+k}f = \sum_{i=0}^{\delta-1} c_{i+k}1_{C_i} \quad \text{a.e. } (\lambda).
\]
Proof. By Theorem 2.3, \(\mu I_{C_i} \) is \(P^\delta \)-invariant, \(\mu(C_i) = 1/\delta \), and \(\mu I_{C_i} P^k = \mu I_{C_{i+k} - j\delta} \) where \(j \) is the largest non-negative integer for which \(j\delta \leq i + k \). Hence

\[
\int_{C_i} P^k f \, d\mu = \int f (\mu I_{C_i} P^k) = \int f \, d\mu I_{C_{i+k} - j\delta} \, f \, d\mu = c_{i+k}.
\]

Now \(P^k \) acting on \(C_i \) is aperiodic. For any \(f \in L_\infty (\lambda) \), applying Theorem 3.1, we arrive at the conclusion that the sequence \(\{P^\delta f\} \) converges a.e. (\(\lambda \)) on \(C_i \) to the limit \(c_i = \delta \int_{C_i} f \, d\mu \). Hence the sequence converges a.e. (\(\lambda \)) to \(\sum_{i=0}^{\delta-1} c_i I_{C_i} \). Replacing \(f \) by \(P^k f \) in the sequence, we conclude that the sequence \(\{P^{n\delta+k} f\} \) converges a.e. (\(\lambda \)) to \(\sum_{i=0}^{\delta-1} d_i 1_{C_i} \) where \(d_i = \delta \int_{C_i} P^k f \, d\mu = c_{i+k} \). In a similar manner, 2 may be derived from Theorem 3.2 and 3 may be derived from Theorem 3.3.

Theorem 3.6. Let \(P \) be a \(\lambda \)-continuous, conservative and ergodic Markov operator whose nontrivial invariant measure \(\mu \) is finite (\(\mu \) is normalized as usual). Let the period of \(P \) be \(\delta \) and \(C_0, C_1, \ldots, C_{\delta-1} \) be the totality of distinct, indecomposable \(P^\delta \)-closed sets with \(C_0 = A(C_1), \ldots, C_{\delta-2} = A(C_{\delta-1}) \). For \(j > \delta - 1 \), let \(C_j = C_{j-n\delta} \) where \(n \) is the largest non-negative integer such that \(n\delta \leq j \). For every non-negative integer \(k \), define function \(g_k \) on \(X \times X \) by

\[
g_k(x, y) = \delta \sum_{i=0}^{\delta-1} 1_{C_i \times C_{i+k}}(x, y) \, \frac{d\mu}{d\lambda}(y).
\]

Then the sequence \(\{P^{n\delta+k}f(\cdot, \cdot)\} \) converges in \(L_1(\nu \times \lambda) \) to \(g_k \) for every \(\nu \in 2^X \). We also have

\[
\lim \inf \nu_{n \to \infty} P^{n\delta+k}(x, y) = g_k(x, y) \quad \text{for (} \lambda \times \lambda \text{) almost all (} x, y \text{)}.
\]

Proof. As in the proof of Theorem 3.4 we define \(\tilde{p}^{(n)}(x, y) \) by (3.12) and \(\tilde{p}(x, y) = \tilde{p}^{(1)}(x, y) \). Then for (\(\lambda \)) almost all \(x \), \(\tilde{p}^{(n)}(x, \cdot) \in L_1(\mu) \) with \(L_1(\mu) \) norm equal to 1. Furthermore, since \(C_i = A^\delta(C_{i+k}) \) we have \(P^\delta 1_{C_{i+k}} \geq 1_{C_i} \). Hence

\[
\sum_{i=0}^{\delta-1} P^k 1_{C_{i+k}} \geq \sum_{i=0}^{\delta-1} 1_{C_i}.
\]

However, equality holds in (3.13) since both sides of (3.13) are equal to 1. Hence \(P^k 1_{C_{i+k}} = 1_{C_i} \), therefore, \(P^k 1_{C_{i+k}} = 1_{C_i} P^k 1_{C_{i+k}} \) and \(1_{C_i} P^k 1_{X-C_{i+k}} = 0 \). Thus for every \(f \in L_\infty(\lambda) \), \(P^k I_{C_{i+k}} f = I_{C_i} P^k I_{C_{i+k}} f = I_{C_i} P^k f \). In terms of the density function \(\tilde{p}^{(k)}(x, y) \), we then have

\[
1_{C_i}(x) \tilde{p}^{(k)}(x, y) = 1_{C_i}(x) \tilde{p}^{(k)}(x, y) 1_{C_{i+k}}(y) = \tilde{p}^{(k)}(x, y) 1_{C_{i+k}}(y)
\]

for (\(\lambda \times \lambda \)) almost all \((x, y) \). Hence for (\(\lambda \)) almost all \(x \in C_i \), \(\tilde{p}^{(k)}(x, \cdot) = \tilde{p}^{(k)}(x, \cdot) 1_{C_{i+k}} \). Now we consider the \(\mu \)-reverse \(Q \) of \(P \) as in the proof of Theorem 3.4. Since a set is \(P^{\delta} \)-closed if and only if it is \(Q \)-closed, \(Q \) also has \(\delta \) as its period and \(\{C_0, \ldots, C_{\delta-1}\} \) is also the collection of all indecomposable \(Q^\delta \)-closed sets.
Applying Theorem 3.5 to Q and $\bar{p}^{(k)}(x, \cdot)$ we have the sequence $\{Q^{n_k}p^{(k)}(x, \cdot)\}$ converging in $L_1(\mu)$ to $\delta \cdot 1_{C_i+k}$ for (λ) almost all $x \in C_i$ and $\liminf_{n \to \infty} \bar{p}^{(n_k+k)}(x,y) = \delta$ for $(\lambda \times \lambda)$ almost all $(x,y) \in C_i \times C_i+k$. Hence $\liminf_{n \to \infty} \bar{p}^{(n_k+k)}(x,y) = \delta \sum_{i=0}^{\delta-1} 1_{C_i \times C_i+k}(x,y)$ and $\liminf_{n \to \infty} \bar{p}^{(n_k+k)}(x,y) = g_k(x,y)$ follows immediately for $(\lambda \times \lambda)$ almost all (x,y). Moreover, if we define h_n by

$$h_n(x) = \int \left| \bar{p}^{(n_k+k)}(x,y) - \delta \sum_{i=0}^{\delta-1} 1_{C_i \times C_i+k}(x,y) \right| \mu(dy),$$

then $h_n(x) \to 0$ for (λ) almost all x. We also have, for (λ) almost all x

$$h_n(x) \leq \int \bar{p}^{(n_k+k)}(x,y)\mu(dy) + \int \delta \sum_{i=0}^{\delta-1} 1_{C_i \times C_i+k}(x,y)\mu(dy) \leq 2.$$

Hence for any $v \in \mathcal{M}^+(\mathcal{X})$, $\int h_n(x)v(dx) \to 0$, i.e.,

$$(3.14) \lim_{n \to \infty} \int \left| \bar{p}^{(n_k+k)}(x,y) - \delta \sum_{i=0}^{\delta-1} 1_{C_i \times C_i+k}(x,y) \right| \mu(dy)v(dx) = 0.$$

The $L_1(\lambda \times \lambda)$ convergence of $\{p^{n_k+k}(\cdot, \cdot)\}$ to g_k then follows from (3.14).

Now we turn to study the case that the invariant measure μ is infinite. We shall need the following

Lemma 3.12. If a set E has the property that there exists an increasing sequence $\{n_k\}$ of positive integers for which the sequence of functions:

$$(3.14) P^{n_0}1_E, P^{n_1}1_E, P^{n_1+n_2}1_E, \ldots, P^{n_k}1_E, P^{n_k+n_{k+1}}1_E, \ldots, P^{n_k+k}1_E, \ldots$$

converges to 0 uniformly on E, then $\limsup_{n \to \infty} P^n1_E = 0$ a.e. (λ).

Proof. Let ε be an arbitrary positive number. Then there is a positive integer k_1 such that $P^{n_k+1}1_E$ and all the terms in the sequence (3.14) which follow $P^{n_k+1}1_E$ are $< \varepsilon$ on E. Let k_2 be an integer such that $k_2 > n_k$. Then $n_{k_2} > n_k$, hence

$$P^{n_{k_2}1_E} < \varepsilon, \quad P^{n_{k_2}+n_k}1_E < \varepsilon \quad \text{on } E.$$

Let $k_3 > n_{k_1} + n_{k_2}$, then $n_{k_3} > n_{k_1}$ and

$$P^{n_{k_3}1_E} < \varepsilon, \quad P^{n_{k_3}+n_{k_1}+n_{k_2}+n_{k_2}+n_{k_1}}1_E < \varepsilon \quad \text{on } E,$$

\[\vdots \text{etc.} \]

In this manner, we obtain a sequence $\{n_{k_i}\}$ of positive integers. We shall rename it $\{m_i\}$. This sequence has the property that, for every positive integer i,

$$(3.15) P^{m_1}1_E < \varepsilon, \quad P^{m_1+m_2+1}1_E < \varepsilon, \quad P^{m_1+m_2+\ldots+m_{i-1}+m_i}1_E < \varepsilon \quad \text{on } E.$$

Now suppose $\limsup_{n \to \infty} P^n1_E$ is not equal to 0 a.e. (λ). Then $\liminf_{n \to \infty} P^n1_{E'}$ is not equal to 1 a.e. (λ) where $E' = X - E$. Since, by Lemma 3.2, $\liminf_{n \to \infty} P^n1_{E'}$ is a constant function, $\liminf_{n \to \infty} P^n1_{E'} = a$ a.e.(λ) for some $a < 1$. Let $b = 1 - a$
and \(\varepsilon < b/2 \). Let \(i_0 \) be an integer such that \(i_0(b - 2\varepsilon) > 1 \). By Lemma 3.8, there is a point \(x \) of \(X \) and a positive integer \(N \) such that

\[
P^{N+1}_E(x) < a + \varepsilon, \quad P^{N+m_1+\cdots+m_{i_0}}_E(x) < a + \varepsilon.
\]

Then

(3.16) \(P^{N+1}_E(x) > b - \varepsilon, \quad P^{N+m_1+\cdots+m_{i_0}}_E(x) > b - \varepsilon. \)

Now let

\[
p_1(x, y) = \int_E p^{(N)}(x, y_1) p^{(m_1)}(y_1, y) \lambda(dy_1);
\]

\[
p_2(x, y) = \int_E \int_E p^{(N)}(x, y_1) p^{(m_1)}(y_1, y_2) p^{(m_2)}(y_2, y) \lambda(dy_1) \lambda(dy_2),
\]

\[
p_{i_0}(x, y) = \int_E \cdots \int_E p^{(N)}(x, y_1) p^{(m_1)}(y_1, y_2) \cdots p^{(m_{i_0})}(y_{i_0}, y) \lambda(dy_1) \lambda(dy_2) \cdots \lambda(dy_{i_0}),
\]

and

\[
K_0(x, E) = P^{N+1}_E(x),
\]

\[
K_1(x, E) = \int_E p_1(x, y) \lambda(dy) = P^N_E P^{m_1}_E(x),
\]

\[
K_{i_0}(x, E) = \int_E p_{i_0}(x, y) \lambda(dy) = P^N_E P^{m_1}_E \cdots P^{m_{i_0-1}}_E P^{m_{i_0}}_E(x).
\]

Then

(3.17) \(K_0(x, E) + K_1(x, E) + \cdots + K_{i_0}(x, E) \leq 1. \)

(3.17) may be proved by an elementary method similar to the one used in the proof of Lemma 6.1 of [8], or by constructing the infinite product space \(\Omega \) and the infinite product \(\sigma \)-algebra \(\mathcal{F} \) as in the proof of Lemma 3.11 and then defining a probability measure \(\eta \) on \(\mathcal{F} \) by

\[
\eta[X_1 \in A_1, \ldots, X_n \in A_n]
\]

\[
= \int_{A_1} \cdots \int_{A_n} p(x, x_1)(x_1, x_2) \cdots p(x_{n-1}, x_n) \lambda(dx_1) \cdots \lambda(dx_n).
\]

Then the left-hand side of (3.17) is

\[
\eta[X_n \in E \text{ for some } n \text{ equal to one of } N, N + m_1, \ldots, N + m_1 + \cdots + m_{i_0}].
\]

Now, for \(1 \leq k \leq i_0 \)
Applying (3.15), we have
\[P^{N+m_1+\ldots+m_k}1_E(x) \leq [K_0(x,E) + \cdots + K_{k-1}(x,E)]\varepsilon + K_k(x,E) \]
\[\leq \varepsilon + K_k(x,E). \]
Hence \(K_k(x,E) \geq b - 2\varepsilon \) by (3.16). Thus we obtain the inequality
\[K_1(x,E) + \cdots + K_{i_0}(x,E) \geq i_0(b - 2\varepsilon) > 1 \]
which contradicts (3.17). Thus the conclusion of Lemma 3.12 is proved.

Theorem 3.7. If \(P \) is a \(\lambda \)-continuous, conservative, ergodic and aperiodic Markov operator whose invariant measure \(\mu \) is infinite, and if \(E \) is a set of finite \(\mu \) measure, then, for every positive number \(\varepsilon \), there is a set \(E_\varepsilon \subseteq E \) such that
\[\mu(E_\varepsilon) < \varepsilon \text{ and } \lim_{n \to \infty} P^n1_{E_\varepsilon^c} = 0 \text{ a.e. (}\lambda\text{).} \]

Proof. Since \(E \) is a set of finite \(\mu \) measure, \(\liminf_{n \to \infty} P^n1_E = 0 \) a.e. (\(\lambda \)) by Lemma 3.2. By Lemma 3.8, for any positive number \(\delta \) there is a set \(A \) with \(\lambda(X - A) < \delta \) and an increasing sequence \(\{n_i\} \) of positive integers such that the sequence of functions:
\[(3.18) \quad P^{n_0}1_E, P^{n_1}1_E, P^{n_1+1}1_E, P^{n_2}1_E, P^{n_2+1}1_E, P^{n_3}1_E, \ldots \]
converges to 0 uniformly on \(A \). We choose \(\delta \) to satisfy the condition that \(\mu(E \cap B) < \varepsilon \) whenever \(\lambda(B) < \delta \). This is possible because \(\mu_E \) is absolutely continuous to \(\lambda \). Take \(E_\varepsilon \) to be \(E - A \), then the sequence (3.18) converges to 0 uniformly on \(E - E_\varepsilon \). Since \(1_{E_\varepsilon^c} \leq 1_E \), the sequence of functions:
\[P^{n_0}1_{E_\varepsilon^c}, P^{n_1}1_{E_\varepsilon^c}, P^{n_1+1}1_{E_\varepsilon^c}, P^{n_2}1_{E_\varepsilon^c}, P^{n_2+1}1_{E_\varepsilon^c}, P^{n_3}1_{E_\varepsilon^c}, \ldots \]
converges to 0 uniformly on \(E - E_\varepsilon \). Applying Lemma 3.12, we have
\[\lim_{n \to \infty} P^n1_{E_\varepsilon^c} = 0 \text{ a.e. (}\lambda\text{).} \]

Theorem 3.8. If \(P \) is a \(\lambda \)-continuous, conservative, ergodic and aperiodic Markov operator whose invariant measure \(\mu \) is infinite, then there is an increasing sequence \(\{E_k\} \) of sets such that \(\bigcup_{k=1}^\infty E_k = X \) and \(\lim_{n \to \infty} P^n1_{E_k} = 0 \) a.e. (\(\lambda \)) for every \(k \).

Proof. Since \(\mu \) is \(\sigma \)-finite, there exists an increasing sequence \(\{F_k\} \) of sets such that \(\bigcup_{k=1}^\infty F_k = X \) and \(\mu(F_k) < \infty \) for every \(k \). By Theorem 3.7, for each \(k \), there is a set \(E_k \subseteq F_k \) such that \(\mu(F_k - E_k) < 1/2^k \) and \(\lim_{n \to \infty} P^n1_{E_k} = 0 \) a.e. (\(\lambda \)). We may assume the sequence \(\{E_k\} \) to be monotonically increasing. Then
\[\mu\left(X - \bigcup_{k=1}^{\infty} E_k\right) = \mu\left(X - \bigcup_{k=1}^{N} E_k\right) \leq \mu\left[\bigcup_{k=1}^{\infty} (F_k - E_k)\right] \leq \frac{1}{2^{N-1}}. \]

Hence \(\mu(X - \bigcup_{k=1}^{\infty} E_k) = 0 \) and the theorem is proved.

Theorem 3.9. Let \(P \) be a \(\lambda \)-continuous, conservative and ergodic Markov operator whose invariant measure \(\mu \) is infinite, then there is an increasing sequence \(\{E_k\} \) of sets such that

\[\bigcup_{k=1}^{\infty} E_k = X \text{ and } \lim_{n \to \infty} P^n 1_{E_k} = 0 \text{ a.e. (}\lambda\text{)} \text{ for } k = 1, 2, \cdots. \]

Proof. Since \(P \) has a finite period \(\delta \), the space \(X \) is partitioned into \(\delta \) sets: \(C_0, C_1, \cdots, C_{\delta-1} \), of which each is a \(\mathcal{G}^{(\delta)} \) atom. Then \(P^\delta \), acting on \(C_i \) alone, is aperiodic and has \(\mu|C_i \) as its invariant measure. By Theorem 2.3, \(\mu|C_i \) is also infinite. Applying Theorem 3.8, we obtain an increasing sequence \(\{E_{i,k}, k = 1, 2, \cdots\} \) of sets such that \(C_i = \bigcup_{k=1}^{\infty} E_{i,k} \) and \(\lim_{n \to \infty} P^{n\delta} 1_{E_{i,k}} = 0 \), a.e. (\(\lambda \)). Let \(E_k = \bigcup_{i=0}^{\delta-1} E_{i,k} \). Then \(\{E_k\} \) is an increasing sequence of sets such that \(X = \bigcup_{k=1}^{\infty} E_k \) and \(\lim_{n \to \infty} P^{n\delta} 1_{E_k} = 0 \) a.e. (\(\lambda \)) for every \(k \). Now

\[P^{n\delta+i} 1_{E_k}(x) = \int P^{n\delta} 1_{E_k} d\lambda(x), \]

hence \(\lim_{n \to \infty} P^{n\delta+i} 1_{E_k} = 0 \) a.e. (\(\lambda \)) for \(i = 0, 1, \cdots, \delta - 1 \) and the conclusion of the theorem follows immediately.

References

2. ———, *The general theory of Markov processes according to Doeblin*, Z. Wahrnschein-
4. W. Doeblin, *Éléments d'une théorie générale des chaines simples constants de Markoff*,
 Ann. Sci. École Norm. Sup. (3) 57 (1940), 61–111.
 71–98.
6. P. R. Halmos, *Lectures on ergodic theory*, The Mathematical Society of Japan, Tokyo,
 1956.
 Anal. 3 (1954), 13–45.
8. Shu-Teh C. Moy, *\(\lambda \)-continuous Markov chains*, Trans. Amer. Math. Soc. 117 (1965),
 68–91.

SYRACUSE UNIVERSITY,
SYRACUSE, NEW YORK,