Convergence rates in the law of large numbers
Authors:
Leonard E. Baum and Melvin Katz
Journal:
Trans. Amer. Math. Soc. 120 (1965), 108123
MSC:
Primary 60.30
MathSciNet review:
0198524
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [1]
Leonard
E. Baum and Melvin
Katz, Convergence rates in the law of large
numbers, Bull. Amer. Math. Soc. 69 (1963), 771–772. MR 0156373
(27 #6296), http://dx.doi.org/10.1090/S000299041963110277
 [2]
Leonard
E. Baum, Melvin
Katz, and Robert
R. Read, Exponential convergence rates for the
law of large numbers, Trans. Amer. Math.
Soc. 102 (1962),
187–199. MR 0133855
(24 #A3679), http://dx.doi.org/10.1090/S0002994719620133855X
 [3]
P.
Erdös, On a theorem of Hsu and Robbins, Ann. Math.
Statistics 20 (1949), 286–291. MR 0030714
(11,40f)
 [4]
CarlGustav
Esseen, Fourier analysis of distribution functions. A mathematical
study of the LaplaceGaussian law, Acta Math. 77
(1945), 1–125. MR 0014626
(7,312a)
 [5]
W.
Feller, The general form of the socalled law
of the iterated logarithm, Trans. Amer. Math.
Soc. 54 (1943),
373–402. MR 0009263
(5,125c), http://dx.doi.org/10.1090/S00029947194300092637
 [6]
Melvin
L. Katz, The probability in the tail of a distribution, Ann.
Math. Statist. 34 (1963), 312–318. MR 0144369
(26 #1914)
 [7]
Melvin
L. Katz, Note on the BerryEsseen theorem, Ann. Math. Statist.
34 (1963), 1107–1108. MR 0151996
(27 #1977)
 [8]
Michel
Loève, Probability theory, 2nd ed. The University
Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, N.
J.TorontoNew YorkLondon, 1960. MR 0123342
(23 #A670)
 [9]
Frank
Spitzer, A combinatorial lemma and its
application to probability theory, Trans. Amer.
Math. Soc. 82
(1956), 323–339. MR 0079851
(18,156e), http://dx.doi.org/10.1090/S0002994719560079851X
 [1]
 Leonard E. Baum and Melvin Katz, Convergence rates in the law of large numbers, Bull. Amer. Math. Soc. 69 (1963), 771772. MR 0156373 (27:6296)
 [2]
 Leonard E. Baum, Melvin Katz and Robert R. Read, Exponential convergence rates for the law of large numbers, Trans. Amer. Math. Soc. 102 (1962), 187199. MR 0133855 (24:A3679)
 [3]
 Paul Erdös, On a theorem of Hsu and Robbins, Ann. Math. Statist. 20 (1949), 286291. MR 0030714 (11:40f)
 [4]
 C. G. Esseen, Fourier analysis of distribution functions. A mathematical study of the LaplaceGaussian law, Acta Math. 77 (1945), 1125. MR 0014626 (7:312a)
 [5]
 W. Feller, The general form of the socalled law of the iterated logarithm, Trans. Amer. Math. Soc 54 (1943), 373402. MR 0009263 (5:125c)
 [6]
 Melvin Katz, The probability in the tail of a distribution, Ann. Math. Statist. 34 (1963), 312318. MR 0144369 (26:1914)
 [7]
 , Note on the BerryEsseen theorem, Ann. Math. Statist. 34 (1963), 11071108. MR 0151996 (27:1977)
 [8]
 M. Loève, Probability theory, Van Nostrand, New York, 1960. MR 0123342 (23:A670)
 [9]
 F. Spitzer, A combinatorial lemma and its application to probability theory, Trans. Amer. Math. Soc. 82 (1956), 323339. MR 0079851 (18:156e)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
60.30
Retrieve articles in all journals
with MSC:
60.30
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947196501985241
PII:
S 00029947(1965)01985241
Article copyright:
© Copyright 1965
American Mathematical Society
