Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Oscillatory properties of certain nonlinear matrix differential systems of second order


Author: Garret J. Etgen
Journal: Trans. Amer. Math. Soc. 122 (1966), 289-310
MSC: Primary 34.42
DOI: https://doi.org/10.1090/S0002-9947-1966-0190421-1
MathSciNet review: 0190421
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. H. Barrett, Matrix systems of second order differential equations, Portugal. Math. 14 (1955), 78-89. MR 0080219 (18:211d)
  • [2] -, A Prüfer transformation for matrix differential equations, Proc. Amer. Math. Soc. 8 (1957), 510-517. MR 0087821 (19:415f)
  • [3] E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. MR 0069338 (16:1022b)
  • [4] E. O. Ince, Ordinary differential equations, Dover, New York, 1926.
  • [5] F. J. Murray and K. S. Miller, Existence theorems for ordinary differential equations, New York Univ. Press, New York, 1954. MR 0064934 (16:358b)
  • [6] W. T. Reid, A matrix differential equation of the Riccati type, Amer. J. Math. 68 (1964), 237-246. MR 0015610 (7:446a)
  • [7] -, A Prüfer transformation for differential systems, Pacific J. Math. 8 (1958), 575-584. MR 0099474 (20:5913)
  • [8] W. M. Whyburn, Existence and oscillation theorems for non-linear differential equations of second order, Trans. Amer. Math. Soc. 30 (1928), 848-854. MR 1501463
  • [9] -, On the fundamental existence theorems for differential systems, Ann. of Math. 30 (1928), 31-38. MR 1502865
  • [10] -, Functional properties of the solutions of differential systems, Trans. Amer. Math. Soc. 32 (1930), 502-508. MR 1501548

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34.42

Retrieve articles in all journals with MSC: 34.42


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1966-0190421-1
Article copyright: © Copyright 1966 American Mathematical Society

American Mathematical Society