Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A necessary condition that a cellular upper semi-continuous decomposition of $ E\sp{n}$ yield $ E\sp{n}$


Author: T. M. Price
Journal: Trans. Amer. Math. Soc. 122 (1966), 427-435
MSC: Primary 54.78
DOI: https://doi.org/10.1090/S0002-9947-1966-0193627-0
MathSciNet review: 0193627
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] S. Armentrout, Upper semicontinuous decompositions of $ {E^3}$ with at most countably many nondegenerate elements, Ann. of Math. 78 (1963), 605-618. MR 0156331 (27:6255)
  • [2] R. H. Bing, A decomposition of $ {E^3}$ into points and tame arcs such that the decomposition space is topologically different from $ {E^3}$, Ann. of Math. 65 (1957), 484-500. MR 0092961 (19:1187g)
  • [3] -, Conditions under which a surface in $ {E^3}$ is tame, Fund. Math. 47 (1959), 105-139. MR 0107229 (21:5954)
  • [4] E. H. Connell, Images of $ {E^n}$ under acyclic maps, Amer. J. Math. 83 (1961), 787-790. MR 0137122 (25:578)
  • [5] C. H. Edwards, Jr., Open $ 3$-manifolds which are simply connected at infinity, Proc. Amer. Math. Soc. 14 (1963), 391-395. MR 0150745 (27:732)
  • [6] D. R. McMillan, Jr., Cartesian products of contractible open manifolds, Bull. Amer. Math. Soc. 67 (1961), 510-514. MR 0131280 (24:A1132)
  • [7] J. Stallings, The piecewise-linear structure of Euclidean spaces, Proc. Cambridge Philos. Soc. 59 (1962), 481-488. MR 0149457 (26:6945)
  • [8] J. H. C. Whitehead, Combinatorial homotopy. II, Bull. Amer. Math. Soc. 55 (1949), 453-496. MR 0030760 (11:48c)
  • [9] R. L. Wilder, Monotone mappings of manifolds. II, Michigan Math. J. 5 (1958), 19-23. MR 0097798 (20:4265)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.78

Retrieve articles in all journals with MSC: 54.78


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1966-0193627-0
Article copyright: © Copyright 1966 American Mathematical Society

American Mathematical Society