CORRECTION TO THE PAPER

ON THE ZEROS OF POLYNOMIALS
OVER DIVISION RINGS

BY

B. GORDON AND T. S. MOTZKIN

On p. 226 (116 (1965), 218–226) it is stated that the curve $\xi_2^3 = (\xi_1 + 1)^3 - \xi_1^3$ has exactly nine points in $Q(\sqrt{3})$. However, one of these is at infinity; hence $N(f) = 16$ rather than 18 for this example. An example of a quadratic polynomial over D with $16 < N(f) < \infty$ is

$$f(x) = (\xi_3 - \xi_2^2)e_1 + (\xi_1^2 - \xi_2\xi_3 - 1)e_2 + (\xi_2^2 - 1)e_3.$$

To find the roots of $f(x)$ we consider the system

$$\begin{align*}
\xi_3 &= \xi_2^2, \\
\xi_1^2 &= \xi_2\xi_3 + 1, \\
\xi_4 &= 1.
\end{align*}$$

Eliminating ξ_3 we obtain

$$(1) \quad \xi_1^2 = \xi_2^3 + 1.$$

Euler [1] proved in 1738 that the only solutions of (1) in Q are

$$(\xi_1, \xi_2) = (0, -1), (\pm 1, 0), \text{ and } (\pm 3, 2).$$

Hence by a theorem of Billing [2], there are only finitely many solutions of (1) in $Q(\sqrt{3})$. These include the eleven pairs $(\xi_1, \xi_2) = (0, -\omega), (\pm 1, 0), \text{ and } (\pm 3, 2\omega)$, where ω is any cube root of unity. Corresponding to each (ξ_1, ξ_2) there is a unique value of ξ_3, and two values for ξ_4. Thus $22 \leq N(f) < \infty$.

REFERENCES

(1) NSF Grants GP-5497 and GP-4519.