Decompostions of with a compact -dimensional set of nondegenerate elements

Author:
Steve Armentrout

Journal:
Trans. Amer. Math. Soc. **123** (1966), 165-177

MSC:
Primary 54.78

MathSciNet review:
0195074

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**Steve Armentrout,*Upper semi-continuous decompositions of 𝐸³ with at most countably many non-degenerate elements*, Ann. of Math. (2)**78**(1963), 605–618. MR**0156331****[2]**-,*Concerning point-like decompositions of that yield -manifolds*, Abstract 619-115, Notices Amer. Math. Soc.**12**(1965), 90.**[3]**R. J. Bean,*Decompositions of which yield*, Abstract 619-198, Notices Amer. Math. Soc.**12**(1965), 117.**[4]**R. H. Bing,*Upper semicontinuous decompositions of 𝐸³*, Ann. of Math. (2)**65**(1957), 363–374. MR**0092960****[5]**R. H. Bing,*A decomposition of 𝐸³ into points and tame arcs such that the decomposition space is topologically different from 𝐸³*, Ann. of Math. (2)**65**(1957), 484–500. MR**0092961****[6]**-,*A homeomorphism between the -sphere and the sum of two solid horned spheres*, Ann. of Math.**59**(1952), 354-362.**[7]**-,*Point like decompositions of*, Fund. Math.**50**(1962), 431-453.**[8]**R. H. Bing,*Snake-like continua*, Duke Math. J.**18**(1951), 653–663. MR**0043450****[9]**R. H. Bing,*Inequivalent families of periodic homeomorphisms of 𝐸³*, Ann. of Math. (2)**80**(1964), 78–93. MR**0163308****[10]**-,*Topology of -manifolds and related topics*, Decompositions of , Prentice-Hall, Englewood Cliffs, N.J., 1962; pp. 5-21.**[11]**R. H. Bing,*An alternative proof that 3-manifolds can be triangulated*, Ann. of Math. (2)**69**(1959), 37–65. MR**0100841****[12]**K. W. Kwun,*Upper semi-continuous decompositions of the -sphere*, Proc. Amer. Math. Soc.**13**(1962), 284-290.**[13]**Kyung Whan Kwun and Frank Raymond,*Almost acyclic maps on manifolds*, Amer. J. Math.**86**(1964), 638–650. MR**0184239****[14]**L.L. Lininger,*The sum of two crumpledcubes is if it is a -manifold*, Abstract 64T-445, Notices Amer. Math. Soc.**11**(1964), 678.**[15]**L. F. McAuley,*Another decomposition of into points and intervals*(to appear).**[16]**Edwin E. Moise,*Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung*, Ann. of Math. (2)**56**(1952), 96–114. MR**0048805****[17]**R. L. Moore,*Foundations of point set theory*, Revised edition. American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR**0150722****[18]**C. D. Papakyriakopoulos,*On Dehn’s lemma and the asphericity of knots*, Ann. of Math. (2)**66**(1957), 1–26. MR**0090053****[19]**T. M. Price,*Cellular decompositions of*, Ph. D. Thesis, University of Wisconsin, Madison, Wis., 1964.**[20]**Horst Schubert,*Knoten und Vollringe*, Acta Math.**90**(1953), 131–286 (German). MR**0072482****[21]**D. G. Stewart,*Cellular subsets of the 3-sphere*, Trans. Amer. Math. Soc.**114**(1965), 10–22. MR**0173244**, 10.1090/S0002-9947-1965-0173244-8

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54.78

Retrieve articles in all journals with MSC: 54.78

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1966-0195074-4

Article copyright:
© Copyright 1966
American Mathematical Society