Decompostions of with a compact -dimensional set of nondegenerate elements

Author:
Steve Armentrout

Journal:
Trans. Amer. Math. Soc. **123** (1966), 165-177

MSC:
Primary 54.78

DOI:
https://doi.org/10.1090/S0002-9947-1966-0195074-4

MathSciNet review:
0195074

Full-text PDF

References | Similar Articles | Additional Information

**[1]**S. Armentrout,*Upper semi-continuous decompositions of with at most countably many non-degenerate elements*, Ann. of Math.**78**(1963), 605-618. MR**0156331 (27:6255)****[2]**-,*Concerning point-like decompositions of that yield -manifolds*, Abstract 619-115, Notices Amer. Math. Soc.**12**(1965), 90.**[3]**R. J. Bean,*Decompositions of which yield*, Abstract 619-198, Notices Amer. Math. Soc.**12**(1965), 117.**[4]**R. H. Bing,*Upper semicontinuous decompositions of*, Ann. of Math.**65**(1957), 363-374. MR**0092960 (19:1187f)****[5]**-,*A decomposition of into points and tame arcs such that the decomposition space is topologically different from*, Ann. of Math.**65**(1957), 484-500. MR**0092961 (19:1187g)****[6]**-,*A homeomorphism between the -sphere and the sum of two solid horned spheres*, Ann. of Math.**59**(1952), 354-362.**[7]**-,*Point like decompositions of*, Fund. Math.**50**(1962), 431-453.**[8]**-,*Snake-like continua*, Duke Math. J.**18**(1951), 653-663. MR**0043450 (13:265a)****[9]**-,*Inequivalent families of periodic homeomorphisms of*, Ann. of Math.**80**(1964), 78-93. MR**0163308 (29:611)****[10]**-,*Topology of -manifolds and related topics*, Decompositions of , Prentice-Hall, Englewood Cliffs, N.J., 1962; pp. 5-21.**[11]**-,*An alternative proof that -manifolds can be triangulated*, Ann. of Math.**69**(1959), 37-65. MR**0100841 (20:7269)****[12]**K. W. Kwun,*Upper semi-continuous decompositions of the -sphere*, Proc. Amer. Math. Soc.**13**(1962), 284-290.**[13]**K. W. Kwun and F. Raymond,*Almost acyclic maps of manifolds*, Amer. J. Math.**86**(1964), 638-650. MR**0184239 (32:1712)****[14]**L.L. Lininger,*The sum of two crumpledcubes is if it is a -manifold*, Abstract 64T-445, Notices Amer. Math. Soc.**11**(1964), 678.**[15]**L. F. McAuley,*Another decomposition of into points and intervals*(to appear).**[16]**E. E. Moise,*Affine structures in -manifolds*. V.*The triangulation theorem and Hauptvermutung*, Ann. of Math.**56**(1952), 92-114. MR**0048805 (14:72d)****[17]**R. L. Moore,*Foundations of point set theory*, rev. ed., Amer. Math. Soc. Colloq. Publ. Vol. 13, Amer. Math. Soc., Providence, R. I., 1962, MR**0150722 (27:709)****[18]**C. D. Papakyriakopoulos,*On Dehn's lemma and the asphericity of knots*, Ann. of Math.**66**(1957), 1-250. MR**0090053 (19:761a)****[19]**T. M. Price,*Cellular decompositions of*, Ph. D. Thesis, University of Wisconsin, Madison, Wis., 1964.**[20]**H. Schubert,*Knoten und Vollringe*, Acta Math.**90**(1953), 132-286. MR**0072482 (17:291d)****[21]**D. G. Stewart,*Cellular subsets of the -sphere*, Trans. Amer. Math. Soc.**114**(1965), 10-22. MR**0173244 (30:3457)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54.78

Retrieve articles in all journals with MSC: 54.78

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1966-0195074-4

Article copyright:
© Copyright 1966
American Mathematical Society