Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Stationary measures for the flow of a linear differential equation driven by white noise


Author: Harry Dym
Journal: Trans. Amer. Math. Soc. 123 (1966), 130-164
MSC: Primary 60.75
DOI: https://doi.org/10.1090/S0002-9947-1966-0198541-2
MathSciNet review: 0198541
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin, 1961. MR 0158038 (28:1266)
  • [2] G. Birkhoff and G. C. Rota, Ordinary differential equations, Ginn, New York, 1962. MR 0138810 (25:2253)
  • [3] S. Bochner and W. T. Martin, Several complex variables, Princeton Univ. Press, Princeton, N. J., 1948. MR 0027863 (10:366a)
  • [4] S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Modern Phys. 15 (1943), 1-89. (Reprinted in [21].) MR 0008130 (4:248i)
  • [5] E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. MR 0069338 (16:1022b)
  • [6] J. L. Doob, Stochastic processes, Wiley, New York, 1959. MR 1038526 (91d:60002)
  • [7] -, The Brownian movement and stochastic equations, Ann. of Math. 43 (1942), 351-369. (Reprinted in [21].) MR 0006634 (4:17d)
  • [8] -, The elementary Gaussian process, Ann. Math. Statist. 15 (1944), 229-282. MR 0010931 (6:89a)
  • [9] E. B. Dynkin, Infinitesimal operators of Markov processes, Theor. Probability Appl. 1 (1956), 34-53. MR 0089540 (19:691h)
  • [10] F. R. Gantmacher, Applications of the theory of matrices, Interscience, New York, 1959. MR 0107648 (21:6372b)
  • [11] K. Ito, Lectures on stochastic processes, Tata Institute of Fundamental Research, Bombay, 1961. MR 759892 (86f:60049)
  • [12] -, The expected number of zeros of continuous stationary Gaussian process, J. Math. Kyoto Univ. 3 (1964), 207-216. MR 0166824 (29:4097)
  • [13] M. Kac, Probability theory; its role and impact, SIAM Rev. 4 (1962), 1-11. MR 0151991 (27:1972)
  • [14] R. Z. Khasminskii, Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic equations, Theor. Probability Appl. 5 (1960), 179-196. MR 0133871 (24:A3695)
  • [15] M. Loève, Probability theory, 2nd ed., Van Nostrand, Princeton, N. J., 1960. MR 0123342 (23:A670)
  • [16] H. P. McKean, Jr., A winding problem for a resonator driven by a white noise, J. Math. Kyoto Univ. 2 (1963), 227-235. MR 0156389 (27:6312)
  • [17] G. Maruyama and H. Tanaka, Ergodic property of $ N$-dimensional recurrent Markov processes, Mem. Fac. Sci. Kyushu Univ. Ser. A 13 (1959), 157-172. MR 0112175 (22:3030)
  • [18] Ming Chen Wang and G. E. Uhlenbeck, On the theory of the Brownian motion, Rev. Modern Phys. 17 (1945), 323-342. (Reprinted in [21].) MR 0013266 (7:130e)
  • [19] E. Nelson, The adjoint Markoff process, Duke Math. J. 25 (1958), 671-690. MR 0101555 (21:365)
  • [20] J. Potter, Some statistical properties of the motion of a non-linear oscillator driven by white noise, Ph.D. thesis, M.I.T., Cambridge, Mass.; Trans. Amer. Math. Soc. to appear).
  • [21] N. Wax (editor), Selected papers on noise and stochastic processes, Dover, New York, 1954. MR 0062373 (15:970a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60.75

Retrieve articles in all journals with MSC: 60.75


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1966-0198541-2
Article copyright: © Copyright 1966 American Mathematical Society

American Mathematical Society