Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Singular perturbations on the infinite interval

Author: Frank Charles Hoppensteadt
Journal: Trans. Amer. Math. Soc. 123 (1966), 521-535
MSC: Primary 34.50
MathSciNet review: 0194693
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] V. F. Butuzov, Asymptotic formulae for the solution of a system of differential equations on the semi-infinite interval (0≤𝑡<∞) with a small parameter multiplying the derivative, Vestnik Moskov. Univ. Ser. I Mat. Meh. 1963 (1963), no. 4, 3–14 (Russian, with English summary). MR 0153932
  • [2] Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. MR 0069338
  • [3] L. Flatto and N. Levinson, Periodic solutions of singularly perturbed systems, J. Rational Mech. Anal. 4 (1955), 943–950. MR 0076126
  • [4] K. O. Friedrichs and W. R. Wasow, Singular perturbations of non-linear oscillations, Duke Math. J. 13 (1946), 367–381. MR 0018308
  • [5] J. J. Levin and Norman Levinson, Singular perturbations of non-linear systems of differential equations and an associated boundary layer equation, J. Rational Mech. Anal. 3 (1954), 247–270. MR 0061241
  • [6] W. Hahn, On the general concept of stability and Liapunov's direct method, Technical Rep. No. 485, U.S. Army Mathematics Research Center, Madison, Wisconsin, 1964.
  • [7] J. L. Massera, On Liapounoff’s conditions of stability, Ann. of Math. (2) 50 (1949), 705–721. MR 0035354,
  • [8] A. N. Tihonov, Systems of differential equations containing small parameters in the derivatives, Mat. Sbornik N. S. 31(73) (1952), 575–586 (Russian). MR 0055515

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34.50

Retrieve articles in all journals with MSC: 34.50

Additional Information

Article copyright: © Copyright 1966 American Mathematical Society

American Mathematical Society