Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some results giving rates of convergence in the law of large numbers for weighted sums of independent random variables


Authors: W. E. Franck and D. L. Hanson
Journal: Trans. Amer. Math. Soc. 124 (1966), 347-359
MSC: Primary 60.30
DOI: https://doi.org/10.1090/S0002-9947-1966-0199877-1
MathSciNet review: 0199877
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] D. L. Hanson and L. H. Koopmans, On the convergence rate of the law of large numbers for linear combinations of independent random variables, Ann. Math. Statist. 36 (1965), 559-564. MR 0182043 (31:6267)
  • [2] Hermann Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Statist. 23 (1952), 493-507. MR 0057518 (15:241c)
  • [3] B. Jamison, S. Oreye and W. Pruitt, Convergence of weighted averages of independent random variables, Z. Wahrscheinlichkeitstheorie 4 (1965), 40-44. MR 0182044 (31:6268)
  • [4] William E. Pruitt, Summability of independent random variables, J. Math. Mech. (to appear). MR 0195135 (33:3338)
  • [5] D. L. Hanson and L. H. Koopmans, Convergence rates for the law of large numbers for linear combinations of exchangeable and $ \ast $-mixing stochastic processes, Ann. Math. Statist. 36 (1965), 1840-1852. MR 0185643 (32:3105)
  • [6] R. V. Chacon, Ordinary means imply recurrent means, Bull. Amer. Math. Soc. 70 (1964), 796-797. MR 0168720 (29:5977)
  • [7] Melvin L. Katz, The probability in the tail of a distribution, Ann. Math. Statist. 34 (1963), 312-318. MR 0144369 (26:1914)
  • [8] L. E. Baum and Melvin Katz, Convergence rates in the law of large numbers, Bull. Amer. Math. Soc. 69 (1963), 771-772. MR 0156373 (27:6296)
  • [9] -, Convergence rates in the law of large numbers. II, Tech. Rep. No. 75, Univ. of New Mexico Albuquerque, Dept. of Math., 1964.
  • [10] P. Erdös, On a theorem of Hsu and Robbins, Ann. Math. Statist. 20 (1949), 286-291. MR 0030714 (11:40f)
  • [11] M. Loève, Probability theory, 3rd ed., Van Nostrand, Princeton, N. J., 1963. MR 0203748 (34:3596)
  • [12] David Blackewel and J. L. Hodges, Jr., The probability in the extreme tail of a convolution, Ann. Math. Statist. 30 (1959), 1113-1120. MR 0112197 (22:3052)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60.30

Retrieve articles in all journals with MSC: 60.30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1966-0199877-1
Article copyright: © Copyright 1966 American Mathematical Society

American Mathematical Society