CENTRAL AUTOMORPHISMS OF A FINITE p-GROUP

BY

ALBERT D. OTTO

1. Introduction. In recent years there has been an increased interest in the relationship between the order of a finite group G and the order of the automorphism group $A(G)$ of G [1], [6], [7], [8]. Some of the interest has been focused on the role played by the group $A_c(G)$ of central automorphisms for a finite p-group G; in particular, when G is a p-group of class 2 with no abelian direct factors [2]. The purpose of this paper is (1) to use $A_c(G)$ to show that the order $|G|$ of G divides $|A(G)|$ for certain p-groups G and (2) to determine bounds on $|A_c(G)|$ for a p-group G with no abelian direct factors.

All groups will be finite groups. p will denote a prime. If G is a group, then G_2 denotes the derived group, $I(G)$ denotes the group of inner automorphisms, $Z(G)$ denotes the center (or Z, if no ambiguity is possible), and, in addition, $|G|_p$ denotes the highest power of p dividing $|G|$.

2. PN-groups. H. Fitting [5] developed a procedure for determining the number of central automorphisms for a group with a chief series. Throughout the rest of this paper this procedure and the associated notation will be used for the case of a p-group. Suppose G is a p-group. Decompose G into the direct product of two subgroups P and B where P is abelian and B has no nontrivial abelian direct factors and is nonabelian. For each positive integer k, let a_k (resp. b_k, resp. c_k) denote the number of times the number p^k appears in the invariants of P (resp. B/B_2, resp. $Z(B)$), let

$$d_k = a_k^2 + b_k^2 + (a_k + c_k) \cdot \sum_{x \leq k} (a_x + b_x) + (a_k + b_k) \cdot \sum_{x > k} (a_x + c_x),$$

and let

$$\psi(a_k) = 1, \quad a_k = 0,$$

$$= (p^{a_k} - 1)(p^{a_k} - p) \cdots (p^{a_k} - p^{a_k - 1}), \quad a_k \neq 0.$$

Fitting then showed that $|A_c(G)| = \prod_{k=1}^{\infty} p^{kd_k} \cdot \psi(a_k)$. We note that if nonabelian p-groups without abelian direct factors are considered, then this equation is greatly simplified. Thus, the following definition for p-groups is made.

Received by the editors February 14, 1966.

(1) This research was supported in part by the National Science Foundation under Grant NSF GP-1652.
Definition 1. G is a PN-group if G is a nonabelian p-group and has no nontrivial abelian direct factors.

An immediate consequence which has already been demonstrated [2] is that if G is a PN-group, then AC(G) is a p-group. Since our major objective is to determine when |G| divides |A(G)| for a p-group G, Theorem 1 shows that we may restrict our attention to PN-groups. But first a lemma is needed.

Lemma 1(2). Suppose P is an abelian p-group of order \(p^n \), \(n \neq 2 \). Then \(p^n \) divides \(|A(P)|\) if and only if P is not cyclic.

Proof. Since P is abelian, \(A(P) = \mathcal{A}_c(P) \) and, hence, \(|A(P)|_p = |\mathcal{A}_c(P)|_p \). In the computation of \(|\mathcal{A}_c(P)|_p \) we shall use the prescribed notation. Let \(p^r \) be the exponent of P. Since P is abelian, \(b_k = c_k = 0 \) for all \(k \). Also \(d_k = 0 \) and \(\psi(a_k) = 1 \) for \(k > r \) whereas for \(k \leq r \), \(d_k = a_k^2 + a_k \cdot \sum_{x \geq k} a_x + a_k \cdot \sum_{x > k} a_x = a_k^2 + 2a_k \cdot \sum_{x > k} a_x \).

Thus \(|\mathcal{A}_c(P)|_p = p^n \), where

\[
B = \sum_{k=1}^{r} \left\{ k \left[a_k^2 + 2a_k \cdot \sum_{x > k} a_x \right] + \frac{1}{2}a_k(a_k - 1) \right\}.
\]

Since it is known [4] that if P is cyclic then \(p^n \) does not divide \(|A(P)|\), we assume P is not cyclic. To show that \(p^n \) divides \(|A(P)|\) it is sufficient to show that \(B \geq n \).

It is necessary to consider two cases.

Case (a). Suppose \(r = 1 \). Then \(a_1 = n \) and \(a_k = 0 \) for all \(k > 1 \). Since P is not cyclic and \(n \neq 2 \), we have \(a_1 = n \leq 3 \). So \(B = \frac{1}{2}a_1(a_1 - 1) \geq a_1 = n \).

Case (b). Suppose \(r > 1 \). Since \(\sum_{x > k} a_x > 0 \) for \(k \) where \(1 \leq k \leq r - 1 \), we have \(\sum_{k=1}^{r-1} (ka_k \cdot \sum_{x > k} a_x) \geq \sum_{k=1}^{r-1} ka_k \). In addition because \(\sum_{k=1}^{r-1} ka_k \geq (r - 1)a_k^2 \), \(\sum_{k=1}^{r-1} ka_k^2 + \sum_{k=1}^{r-1} (ka_k \cdot \sum_{x \geq k} a_x) \geq (r - 1)a_k^2 + \sum_{k=1}^{r-1} (ka_k \cdot \sum_{x > k} a_x) \). Then since P is not cyclic, either \(a_r > 1 \) or there exists \(k, 1 \leq k \leq r - 1 \), such that \(a_k > 0 \). Thus in either case we have \((r - 1)a_k^2 + \sum_{k=1}^{r-1} (ka_k \cdot \sum_{x > k} a_x) \geq ra_r \). So

\[
B \geq \sum_{k=1}^{r} ka_k^2 + \sum_{k=1}^{r-1} \left(ka_k \cdot \sum_{x > k} a_x \right) + \sum_{k=1}^{r-1} \left(ka_k \cdot \sum_{x \geq k} a_x \right) + \sum_{k=1}^{r-1} \frac{1}{2}a_k(a_k - 1)
\]

\[
\geq ra_r + \sum_{k=1}^{r-1} ka_k = \sum_{k=1}^{r-1} ka_k = n.
\]

Thus \(B \geq n \).

(2) The author is indebted to the referee for a shorter, more elegant proof of Lemma 1.
Theorem 1. If the p-group G is the direct product $P \otimes B$ of the two subgroups P and B where P is abelian of order p^r and B is a PN-group, then $p^r \cdot |A(B)|_p$ divides $|A(G)|$.

Proof. Let $T = A(P) \otimes A(B)$. Then $|T|_p = |A(P)|_p \cdot |A(B)|_p$. At this point we consider three cases.

Case (a). Suppose P is not cyclic and $|P| \neq p^3$. Then by Lemma 1 p^r divides $|A(P)|$. Thus, $p^r \cdot |A(B)|_p$ divides $|T|_p$ which divides $|A(G)|$.

In considering the two remaining cases we look at $[T \cdot A_c(G)]_p$. Since $A(P)$ is a subgroup of $A_c(G)$, $T \cap A_c(G) = A(P) \otimes (A(B) \cap A_c(G)) = A(P) \otimes A_c(B)$. Because A will be either cyclic or of order p^3 in the two remaining cases, we assume $|A(P)|_p = p^{r+1}$. So

$$|T \cdot A_c(G)|_p = \frac{|T|_p \cdot |A_c(G)|_p}{|T \cap A_c(G)|_p} = \frac{|A(P)|_p \cdot |A(B)|_p \cdot |A_c(G)|_p}{|A(P)|_p \cdot |A_c(B)|_p} = (p^{r-1} \cdot |A(B)|_p \cdot |A_c(G)|_p/(p^{r-1} \cdot |A_c(B)|_p))$$

Since $|T \cdot A_c(G)|$ divides $|A(G)|$, it is sufficient to prove

$$|A_c(G)|_p > |A_c(B)|_p \cdot p^{r-1} = |A_c(B)| \cdot p^{r-1}.$$

Case (b). Suppose P is cyclic of order p^r. Using the notation described before, $|A_c(G)| = \prod_{k=1}^{r} p^{kd_k} \cdot \psi(a_k)$ and $|A_c(B)| = \prod_{k=1}^{r} p^{kd'_k}$ where

$$d_k = c_k \cdot \sum_{x \in \mathbb{Z}_p} b_x + b_k \cdot \sum_{x \geq k} c_x.$$

Since P is cyclic, $|A_c(G)|_p = \prod_{k=1}^{r} p^{kd_k}$. Because $d_k = d'_k$ for $k > r$ to compare $|A_c(G)|_p$ and $|A_c(B)|$, it is sufficient to compare $\sum_{k=1}^{r} kd_k$ and $\sum_{k=1}^{r} kd'_k$. It is easy to see that

$$\sum_{k=1}^{r} kd_k = \sum_{k=1}^{r-2} kd_k + (r-1)d_{r-1} + rd_r,$$

$$= \sum_{k=1}^{r-2} k(d'_k + c_k + b_k) + (r-1)(d'_{r-1} + c_{r-1} + 1 + b_{r-1})$$

$$+ r\left(d'_r + \sum_{x \geq r} b_x + \sum_{x \geq r} c_x\right)$$

$$= \sum_{k=1}^{r-1} kd'_k + (r-1) + \sum_{k=1}^{r-1} k(c_k + b_k) + r\left(\sum_{x \geq r} b_x + \sum_{x \geq r} c_x\right).$$

Since $c_k \geq 0$ and $b_k \geq 0$ for all k and since some $b_k > 0$,

$$\sum_{k=1}^{r-1} k(c_k + b_k) + r\left(\sum_{x \geq r} b_x + \sum_{x \geq r} c_x\right) > 0.$$

Consequently, $\sum_{k=1}^{r-1} kd'_k + (r-1) > \sum_{k=1}^{r-1} kd_k + r - 1$. Thus, $|A_c(G)|_p > |A_c(B)| \cdot p^{r-1}$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Case (c). Suppose P is of order p^2. By Case (b) we assume that P is elementary abelian of order p^2. Now we have $\psi(a_1) = (p^2 - 1)(p^2 - p)$ and $\psi(a_x) = 1$ for $x \neq 1$. Hence $|A_c(G)|_p = p^{1+d_1} \prod_{k=2}^{x} p^{kd_k}$. Because $d_k = d_k'$ for $k > 1$ to compare $|A_c(G)|_p$ and $|A_c(B)|$, it is sufficient to compare $1+d_1$ and d_1'. It is easily checked that $d_1 = d_1' + 2(\sum_{x \geq 1} (b_x + c_x)) > d_1'$. Thus $d_1 + 1 > d_1' + 1$. Hence,

$$|A_c(G)|_p > |A_c(B)|_p \cdot p = |A_c(B)| \cdot p^{r-1}.$$

Corollary 1.1. Suppose G is a PN-group and P is an abelian p-group of order p^r. If p^n divides $|A(G)|$, then p^{n+r} divides $|A(G \otimes P)|$.

We now use $A_c(G)$ to show that $|G|$ divides $|A(G)|$ for certain PN-groups G. For this we make the following definition, which was first introduced by Blackburn [3]. Let n and m be positive integers where $n \geq m \geq 3$.

Definition 2. G is in $ECF(m, n, p) \triangleq G$ is a p-group of order p^n and class $m-1$, G/G_2 is elementary abelian, and $|G_i/G_{i+1}| = p$ for $i = 2, 3, \ldots, m-1$; G_i is the ith member of the descending central series.

Theorem 2. Let m and n be positive integers such that $n \geq m > 3$. If G is a PN-group in $ECF(m, n, p)$, then p^n divides $|A(G)|$.

Proof. Since $|G_i/G_{i+1}| = p$ for $i = 2, 3, \ldots, m-1$ and $|G| = p^n$, $|G/G_2| = p^{n+2-m}$. Using the notation described before, we have $b_1 = n+2-m$ and $b_x = 0$ for $x \neq 1$. Thus, $d_1 = (n+2-m) \cdot \sum_{x \geq 1} c_x$ and $d_k = 0$ for $k \neq 1$. Hence, $|A_c(G)| = |F|$ where $F = (n+2-m) \cdot \sum_{x \geq 1} c_x$. Since some $c_x > 0$, $F \geq n+2-m$ and, consequently, $|A_c(G)| \leq p^{n+2-m}$. Let $p' = |Z|$ and $p'' = |Z_2/Z|$; Z_i is the ith member of the ascending central series of G where $Z_1 = Z$. Since G/Z_{m-2} has order at least p^2 and Z_i/Z_{i-1} has order at least p for $i = 1, 2, \ldots, m-2$, we have $1 \leq t \leq (n+2) - (r+m)$. Hence $|Z_2/Z| \leq p^{(n+2) - (r+m)}$. Then

$$|I(G) \cdot A_c(G)| = (|I(G)| \cdot |A_c(G)|)/|I(G) \cap A_c(G)| \geq \frac{(|G| \cdot p^{n+2-m})/|Z_2/Z|}{p^n} \geq \frac{(p^{n-r} \cdot p^{n+2-m})/p^{(n+2) - (r+m)}}{p^n} = p^n.$$

Hence, $|G|$ divides $|A(G)|$.

Corollary 2.1. If G is a p-group of maximal class of order $\geq p^s$, then $|G|$ divides $|A(G)|$.

3. **Bounds on $|A_c(G)|$ for a PN-group G.** We will now prove two theorems which show the influence of the center and commutator factor group in determining the number of central automorphisms for a PN-group. These two theorems will then yield bounds on $|A_c(G)|$ for a PN-group G.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Theorem 3. If G is a PN-group of order p^n where G/G_2 has order p^s, then $p^A \geq |A_\varepsilon(G)| \geq p^C$ where

$$A = s \cdot \sum_{x \equiv 1} c_x$$

and

$$C = 2 \cdot \sum_{x \equiv 1} c_x,$$

when $s = 2$,

$$= 2c_1 + \sum_{k=2}^{s-2} (k+1)c_k + s \cdot \sum_{x \equiv s-1} c_x,$$

when $s > 2$.

Note 1. It should be noted that if there exists a PN-group H of order p^n where H/H_2 is elementary abelian of order p^s and $Z(G)$ is isomorphic to $Z(H)$, then $|A_\varepsilon(H)| = p^A$.

Note 2. In addition it should be noted that if there exists a PN-group K of order p^n where K/K_2 is of type $(s-1, 1)$ and $Z(G)$ is isomorphic to $Z(K)$, then $|A_\varepsilon(K)| = p^C$.

Proof. We observe first that if $s=2$, then G/G_2 is elementary abelian of order p^2 and, hence, $|A_\varepsilon(G)| = p^A = p^C$. Thus, we assume $s>2$. To help in the calculation of $|A_\varepsilon(G)|$ the following notation is introduced. Suppose G/G_2 is of type $(n(1), n(2), \ldots, n(t))$, where $n(1) \geq n(2) \geq \cdots \geq n(t)$. In addition suppose

$$n(1) = n(2) = \cdots = n(s_1),$$

$$n(s_1+1) = n(s_1+2) = \cdots = n(s_2), \quad \text{where } n(s_1) > n(s_2)$$

$$\vdots$$

$$n(s_{a-1}+1) = n(s_{a-1}+2) = \cdots = n(s_a) = n(t), \quad \text{where } n(s_{a-1}) > n(s_a).$$

For convenience we set $s_0 = 0$. Then $\sum_{i=1}^s n(i) = s$, $\sum_{i=1}^s (s_i - s_{i-1})n(s_i) = s$, and $n(s_1) > n(s_2) > \cdots > n(s_a)$. Extended calculations then show that $|A_\varepsilon(G)| = p^B$ where

$$B = \sum_{i \equiv 0}^{s_a} (ks_a)c_k$$

$$+ \sum_{i=2}^{s_a} \sum_{n(s_i) < k < n(s_i-1)} (ks_{i-1})c_k$$

$$+ \sum_{i=1}^{s_a} \left[s_i c_{n(s_i)} + (s_i - s_{i-1}) \left(\sum_{x \equiv n(s_i)} c_x \right) \right] n(s_i).$$

Therefore, it remains for us to show that $A \geq B \geq C$. To facilitate this comparison, we let $A(k)$ (resp. $B(k)$, resp. $C(k)$) be the coefficient of the element c_k in the term A (resp. B, resp. C) for each k. Consequently, it is sufficient to show that $A(k) \geq B(k) \geq C(k)$ for each k.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
We shall first compare \(B(k) \) and \(C(k) \). If \(n(1) = s - 1 \), then \(n(2) = 1 \) and, hence, \(B(k) = C(k) \) for all \(k \). Thus, we assume \(n(1) < s - 1 \). Also since \(G/G_2 \) is not cyclic, \(s_a \geq 2 \). The rest of the proof will be divided into parts.

Part (1). Suppose \(1 \leq k \leq n(s_a) \). Then \(B(k) = ks_a \) and \(C(k) = 1 + k \) since \(k \leq n(s_a) < n(s_1) \leq s - 2 \). Since \(s_a \geq 2 \), \(B(k) \geq C(k) \).

Part (2). Suppose \(k = n(s_j) \) where \(1 \leq j \leq \alpha - 1 \). Then \(C(n(s_j)) = n(s_j) + 1 \) and \(B(n(s_j)) = s_j n(s_j) + \sum_{i=j+1}^{\alpha} n(s_i)(s_i - s_{i-1}) \). Since \(n(s_i) \geq 1 \) and \(s_i - s_{i-1} \geq 1 \) for \(i = j + 1, \ldots, \alpha \) and \(s_j \geq 1 \), \(B(n(s_j)) \geq n(s_j) + 1 = C(n(s_j)) \).

Part (3). Suppose \(n(s_j) < k < n(s_{j-1}) \) where \(2 \leq j \leq \alpha \). Then \(C(k) = k + 1 \) and

\[
B(k) = ks_{j-1} + \sum_{i=j}^{\alpha} (s_i - s_{i-1})n(s_i).
\]

As in Part (2), \(B(k) \geq k + 1 = C(k) \).

Part (4). Suppose \(n(s_1) < k \leq s - 2 \). Then \(C(k) = k + 1 \) and

\[
B(k) = \sum_{i=1}^{\alpha} n(s_i)(s_i - s_{i-1}) = s.
\]

But \(k \leq s - 2 \) implies \(k + 1 \leq s - 1 < s \). So \(B(k) \geq C(k) \).

Part (5). Suppose \(k > n(s_1) \). Then \(C(k) = \sum_{i=1}^{\alpha} (s_i - s_{i-1})n(s_i) = s \).

Part (i). Suppose \(k > n(s_1) \). Then \(B(k) = \sum_{i=1}^{\alpha} (s_i - s_{i-1})n(s_i) = s \).

Part (ii). Suppose \(k = n(s_j) \) where \(1 \leq j \leq \alpha - 1 \). Then

\[
B(n(s_j)) = s_j n(s_j) + \sum_{i=j+1}^{\alpha} n(s_i)(s_i - s_{i-1}) = s.
\]

Since \(n(s_1) > n(s_2) > \cdots > n(s_{j-1}) > n(s_j) \), we have that

\[
s_j n(s_j) + \sum_{i=j+1}^{\alpha} n(s_i)(s_i - s_{i-1}) = \left(\sum_{i=1}^{j} (s_i - s_{i-1}) \right) n(s_j) + \sum_{i=j+1}^{\alpha} n(s_i)(s_i - s_{i-1})
\]

\[
\leq \sum_{i=1}^{j} n(s_i)(s_i - s_{i-1}) + \sum_{i=j+1}^{\alpha} n(s_i)(s_i - s_{i-1})
\]

\[
= \sum_{i=1}^{\alpha} n(s_i)(s_i - s_{i-1}) = s.
\]

Hence, \(s \geq B(k) \).

Part (iii). Suppose \(k = n(s_a) \). Then \(B(k) = s_a n(s_a) \). As before we have that \(n(s_a) s_a = n(s_a) \sum_{i=1}^{\alpha} (s_i - s_{i-1}) \leq \sum_{i=1}^{\alpha} n(s_i)(s_i - s_{i-1}) = s \). Hence, \(s \geq B(k) \).

Part (iv). Suppose \(1 \leq k < n(s_a) \). Then \(B(k) = ks_a \). Since \(k < n(s_a) \), \(ks_a \leq n(s_a) s_a \leq s \). So \(s \geq B(k) \).
Part (v). Suppose \(n(s_j) < k < n(s_{j-1}) \) where \(2 \leq j \leq \alpha \). Then

\[
B(k) = k s_{j-1} + \sum_{i=1}^{\alpha} (s_i - s_{i-1}) n(s_i) \leq n(s_{j-1}) s_{j-1} + \sum_{i=1}^{\alpha} (s_i - s_{i-1}) n(s_i) \leq s.
\]

Theorem 4. If \(G \) is a PN-group of order \(p^n \) where \(Z \) has order \(p' \), then

\[
p^A \geq |A_c(G)| \geq p^C
\]

where

\[
A = r \cdot \sum_{x \geq 1} b_x
\]

and

\[
C = \sum_{k=1}^{r-1} k b_k + r \cdot \sum_{x \geq r} b_x.
\]

Note 3. It should be observed that if there exists a PN-group \(H \) of order \(p^n \) where \(Z \) is elementary abelian of order \(p' \) and \(G/G_2 \) is isomorphic to \(H/H_2 \), then \(|A_c(H)| = p^A \).

Note 4. Also if there exists a PN-group \(K \) of order \(p^n \) where \(Z \) is cyclic of order \(p' \) and \(G/G_2 \) is isomorphic to \(K/K_2 \), then \(|A_c(K)| = p^C \).

Proof. The proof of Theorem 4 corresponds very closely to the proof of Theorem 3 and is, consequently, omitted.

From Theorems 3 and 4 we are able to derive bounds on \(|A_c(G)| \).

Corollary 4.1. If \(G \) is a PN-group, then \(G \) has at least \(p^2 \) and at most \(p^{n^2} \) central automorphisms where \(p^2 \) is the order of \(G/G_2 \) and \(p' \) is the order of \(Z \).

Corollary 4.2. If \(G \) is a nonabelian \(p \)-group, then \(p^2 \) divides \(|A_c(G)| \).

In addition Theorems 3 and 4 lead to some immediate results on when the order of a PN-group will divide the order of its automorphism group. Some of these are as follows.

Corollary 4.3. Suppose \(G \) is a PN-group of order \(p^n \). Suppose \(Z \) is elementary abelian of order \(p' \). Then \(|G| \) divides \(|A(G)| \) under any one of the following conditions:

1. \(r \geq n/2 \),
2. \(p' \mid |Z_2/Z| \),
3. If class of \(G = m \geq 3 \), then \(n + 1 - 2r \leq m \).

Proof. By direct calculation (see Note 3) we have \(|A_c(G)| = p^A \) where \(A = r \cdot \sum_{x \geq 1} c_x \). Since \(G/G_2 \) is not cyclic, \(\sum_{x \geq 1} c_x \geq 2 \). Thus, \(|A_c(G)| \geq p^{2r} \). Next we observe that \(|A_c(G) \cdot I(G)| \geq p^{n+r}/|Z_2/Z| \). The proofs of these three statements now follow.

