Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Amenable groups and groups with the fixed point property


Author: Neil W. Rickert
Journal: Trans. Amer. Math. Soc. 127 (1967), 221-232
MSC: Primary 22.10; Secondary 46.00
DOI: https://doi.org/10.1090/S0002-9947-1967-0222208-6
MathSciNet review: 0222208
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] M. M. Day, Means for the bounded functions and ergodicity of the bounded representations of semi-groups, Trans. Amer. Math. Soc. 69 (1950), 276-291. MR 0044031 (13:357e)
  • [2] -, Amenable semi-groups, Illinois J. Math. 1 (1957), 509-544.
  • [3] -, Fixed point theorems for compact convex sets, Illinois J. Math. 5 (1961), 585-590. MR 0138100 (25:1547)
  • [4] -, Correction to my paper ``Fixed point theorems for compact convex sets," Illinois J. Math. 8 (1964), 713. MR 0169210 (29:6463)
  • [5] J. Dixmier, Les moyennes invariantes dans les semi-groupes et leurs applications, Acta Sci. Math. (Szeged) 12 (1950), 585-590. MR 0037470 (12:267a)
  • [6] N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1958.
  • [7] E. Følner, A generalisation of a theorem of Bogoliouboff to topological abelian groups with an appendix on Banach mean values in non-abelian groups, Math. Scand. 2 (1954), 5-18. MR 0064062 (16:220c)
  • [8] -, On groups with full Banach mean value, Math. Scand. 3 (1955), 243-254. MR 0079220 (18:51f)
  • [9] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. 77 (1963), 335-386. MR 0146298 (26:3820)
  • [10] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962. MR 0145455 (26:2986)
  • [11] E. Hewitt and K. A. Ross, Abstract harmonic analysis. I, Springer, Berlin, 1963.
  • [12] A. Hulanicki, Groups whose regular representation weakly contains all irreducible representations, Studia Math. 24 (1964), 37-59. MR 0191998 (33:225)
  • [13] -, Amenable topological groups (to appear).
  • [14] K. Iwasawa, On some types of topological groups, Ann. of Math. 50 (1949), 507-557. MR 0029911 (10:679a)
  • [15] N. Jacobson, Lie algebras, Interscience, New York, 1962. MR 0143793 (26:1345)
  • [16] S. Kakutani and K. Kodaira, Über das Haarsche Mass in der lokal bikompakten Gruppen, Proc. Imp. Acad. Tokyo 20 (1944), 444-450. MR 0014401 (7:279d)
  • [17] T. Karube, On the local cross sections in locally compact groups, J. Math. Soc. Japan 10 (1958), 343-347. MR 0104761 (21:3514)
  • [18] J. L. Kelley, General topology, Van Nostrand, Princeton, N. J., 1955. MR 0070144 (16:1136c)
  • [19] D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York, 1955. MR 0073104 (17:383b)
  • [20] J. von Neumann, Zur allgemeinen Theorie des Masses, Fund. Math. 13 (1929), 73-116.
  • [21] N. W. Rickert, Some properties of locally compact groups, J. Austral. Math Soc. (to appear). MR 0219656 (36:2735)
  • [22] O. Takenouchi, Sur une classe de fonction de type positif sur un groupe localement compact, Math. J. Okayama Univ. 4 (1955), 143-173. MR 0069186 (16:997c)
  • [23] N. Th. Varopoulos, A theorem on the continuity of homomorphisms of locally compact groups, Proc. Cambridge Philos. Soc. 60 (1964), 449-463. MR 0162880 (29:184)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22.10, 46.00

Retrieve articles in all journals with MSC: 22.10, 46.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1967-0222208-6
Article copyright: © Copyright 1967 American Mathematical Society

American Mathematical Society