On the alternating projections theorem and bivariate stationary stochastic processes

Author:
Habib Salehi

Journal:
Trans. Amer. Math. Soc. **128** (1967), 121-134

MSC:
Primary 60.50; Secondary 47.00

MathSciNet review:
0214135

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we shall first use the theorem of von Neumann on alternating projections to obtain an algorithm for finding the projection of an element *x* in a Hilbert space onto the subspace spanned by -valued orthogonally scattered measures and . We then specialize this algorithm to the case that and are the canonical measures of the components of a bivariate stationary stochastic process (SP), and thereby get an algorithm for finding the best linear predictor in the time domain.

**[1]**A. S. Besicovitch,*A general form of the covering principle and relative differentiation of additive functions. II*, Proc. Cambridge Philos. Soc.**42**(1946), 1–10. MR**0014414****[2]**Harald Cramér,*On the theory of stationary random processes*, Ann. of Math. (2)**41**(1940), 215–230. MR**0000920****[3]**Paul R. Halmos,*Measure Theory*, D. Van Nostrand Company, Inc., New York, N. Y., 1950. MR**0033869****[4]**L. H. Koopmans,*On the coefficient of coherence for weakly stationary stochastic processes*, Ann. Math. Statist.**35**(1964), 532–549. MR**0161404****[5]**P. Masani and J. Robertson,*The time-domain analysis of a continuous parameter weakly stationary stochastic process*, Pacific J. Math.**12**(1962), 1361–1378. MR**0149562****[6]**R. F. Matveev,*On multi-dimensional regular stationary processes*, Theor. Probability Appl.**6**(1961), 149-165.**[7]**John von Neumann,*Functional Operators. I. Measures and Integrals*, Annals of Mathematics Studies, no. 21, Princeton University Press, Princeton, N. J., 1950. MR**0032011****[8]**Frigyes Riesz and Béla Sz.-Nagy,*Functional analysis*, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR**0071727****[9]**Milton Rosenberg,*The square-integrability of matrix-valued functions with respect to a non-negative Hermitian measure*, Duke Math. J.**31**(1964), 291–298. MR**0163346****[10]**H. Salehi,*The Hilbert space of square-integrable matrix-valued functions with respect to a*-*finite nonnegative, hermitian measure and stochastic integrals*, Research memorandum, Michigan State Univ., East Lansing, 1966.**[11]**-,*The prediction theory of multivariate stochastic processes with continuous time*, Doctoral Thesis, Indiana Univ., Bloomington, 1965.**[12]**N. Wiener and P. Masani,*The prediction theory of multivariate stochastic processes*. I, Acta Math.**98**(1957), 111-150; II, Acta Math.**99**(1958), 93-137.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
60.50,
47.00

Retrieve articles in all journals with MSC: 60.50, 47.00

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1967-0214135-5

Article copyright:
© Copyright 1967
American Mathematical Society