ON HOMOGENEOUS SPACES AND REDUCTIVE SUBALGEBRAS OF SIMPLE LIE ALGEBRAS

BY

A. SAGLE AND D. J. WINTER(1)

1. Introduction. Let G be a connected Lie group and H a closed subgroup. Then the homogeneous space $M=G/H$ is called reductive if in the Lie algebra \mathfrak{g} of G there exists a subspace \mathfrak{m} such that $\mathfrak{g}=\mathfrak{m}+\mathfrak{h}$ (subspace direct sum) and $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$ where \mathfrak{h} is the Lie algebra of H (see [4], [5]). In this case the pair $(\mathfrak{g}, \mathfrak{h})$ is called a reductive pair and the subspace \mathfrak{m} can be made into an anti-commutative algebra as follows. For $X, Y \in \mathfrak{m}$ let $\mathcal{X}(X, Y)=XY+[X, Y]_m$ (resp. $\mathcal{H}(X, Y)=\pi(X, Y)_h$) is the projection of $[X, Y]$ in \mathfrak{g} into \mathfrak{m} (resp. \mathfrak{h}). This algebra is related to the canonical G-invariant connection ∇ of the first kind on G/H by $\nabla_{\mathcal{X}}(Y)=\pi XY$ where $\pi=H \in M$ (see [5, Theorem 10.1]).

For a fixed decomposition $\mathfrak{g}=\mathfrak{m}+\mathfrak{h}$, the Lie algebra identities of \mathfrak{g} yield the following identities for \mathfrak{m} and \mathfrak{h}. For $X, Y, Z \in \mathfrak{m}$ and $U \in \mathfrak{h}$,

(1) $XY=-YX$ (bilinear);
(2) $\mathcal{H}(X, Y)=-\mathcal{H}(Y, X)$ (bilinear);
(3) $[Z, \mathcal{H}(X, Y)] + [X, \mathcal{H}(Y, Z)] + [Y, \mathcal{H}(Z, X)] = \mathcal{J}(X, Y, Z) = (XY)Z + (YZ)X + (ZX)Y$;
(4) $\mathcal{H}(XY, Z) + \mathcal{H}(YZ, X) + \mathcal{H}(ZX, Y) = 0$;
(5) $\mathcal{H}([X, Y], U) = \mathcal{H}([X, U], Y) + \mathcal{H}(X, [Y, U])$;

In particular (6) says the mappings $\text{ad}_{m} U: \mathfrak{m} \to \mathfrak{m}: X \to [U, X]$ are derivations of the algebra \mathfrak{m}. Using these identities, there was established in [6] a correspondence between simple algebras \mathfrak{m} and holonomy irreducible simply connected spaces G/H which are not symmetric ($\mathfrak{m} \mathfrak{m} = 0$ if and only if G/H is a symmetric space); for example, if G/H is riemannian, then G/H is holonomy irreducible if and only if \mathfrak{m} is a simple algebra.

In this paper, we consider pairs $(\mathfrak{g}, \mathfrak{h})$ where \mathfrak{g} is a simple Lie algebra over a field F of characteristic zero and \mathfrak{h} is either semisimple, or regular and reductive (see [2]). In each case we show that the associated \mathfrak{m} is either simple or abelian ($\mathfrak{m}^2 = 0$). This together with [6] shows in particular that if G is a simple connected Lie group and H a closed semisimple or regular reductive Lie subgroup of G such that G/H is simply connected, then either G/H is a symmetric space or G/H is holonomy irreducible. This is a reasonable account of the situation since it can be shown that

Received by the editors July 19, 1966.

(1) Research supported by NSF Grant GP-1453 and by Army Research Office, Durham (respectively).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
if G/H is a holonomy irreducible pseudo-riemannian reductive space with G simple, then \mathfrak{h} is a reductive subalgebra of \mathfrak{g}.

2. The regular reductive case.

Lemma 1. Let \mathfrak{a} be a nonassociative algebra with derivation algebra $\text{Der} \mathfrak{a}$. Assume that \mathfrak{a} has no proper ideal stable under $\text{Der} \mathfrak{a}$. Then either \mathfrak{a} is simple or $\mathfrak{a}^2 = 0$.

Proof. Assume $\mathfrak{a}^2 \neq 0$ and let $\mathfrak{T}(\mathfrak{a})$ denote the associative algebra generated by the left and right multiplications of \mathfrak{a} [3, p. 290]. Let \mathfrak{R} be the radical of $\mathfrak{T}(\mathfrak{a})$. Then $\mathfrak{R}\mathfrak{a}$ is an ideal of \mathfrak{a} since $\mathfrak{T}(\mathfrak{a})/(\mathfrak{R}\mathfrak{a}) \leq \mathfrak{T}(\mathfrak{a})$ since $\text{ad}_{\text{Hom}(\mathfrak{a}, \mathfrak{a})} \mathfrak{D}$ stabilizes the set of right and left multiplications (e.g., $[\mathfrak{D}, L(\mathfrak{A})] = L(D(\mathfrak{A}))$ where $L(\mathfrak{B})$ denotes left multiplication by \mathfrak{B} in \mathfrak{a}). Thus $\text{ad}_{\mathfrak{T}(\mathfrak{a})} \mathfrak{D}$ is a derivation of $\mathfrak{T}(\mathfrak{a})$ and it follows that $[\mathfrak{D}, \mathfrak{R}] \leq [\mathfrak{D}, \mathfrak{R}][3, \text{ p. 30, exercise 22}]$. Thus $[\mathfrak{D}, \mathfrak{R}] \leq [\mathfrak{D}, \mathfrak{R}] + [\mathfrak{R}(\mathfrak{A}), \mathfrak{R}]$. Thus \mathfrak{R} is a $\text{Der} \mathfrak{a}$-stable ideal of \mathfrak{a}. By assumption, we must have $\mathfrak{R}=\mathfrak{a}$ or $\mathfrak{R}=0$. If $\mathfrak{R}=\mathfrak{a}$, then for some i, $0=\mathfrak{R}^i=\mathfrak{R}^{i-1}a=\cdots=\mathfrak{R}^i=\mathfrak{a}$ and $a=0$. Thus we may assume that $\mathfrak{R}=0$. Then $\mathfrak{R}=0$ and $\mathfrak{T}(\mathfrak{a})$ is completely reducible on \mathfrak{a}. \mathfrak{a}^2 is clearly $\text{Der} \mathfrak{a}$-stable. Assuming that $\mathfrak{a}^2 \neq 0$, we must have $\mathfrak{a}^2 = \mathfrak{a}$ by hypothesis. We claim that $\mathfrak{a}^2 = \mathfrak{a}$ implies that \mathfrak{a} is simple. For if \mathfrak{b} were a proper ideal of \mathfrak{a}, then \mathfrak{b} would be $\mathfrak{T}(\mathfrak{a})$-stable and hence $a = b \oplus b'$ for some $\mathfrak{T}(\mathfrak{a})$-stable b'. This b' would be an ideal and $\mathfrak{a} = \mathfrak{a}^2 = b^2 + (b')^2$ shows that $b^2 = b$. But then $b = b^2$ would be $\text{Der} \mathfrak{a}$-stable since for B_1, B_2 in \mathfrak{b}, $D(B_1B_2) = (D(B_1))B_2 + B_1(D(B_2)) \in \mathfrak{b}$. Thus \mathfrak{a} is simple.

We now consider reductive pairs $(\mathfrak{g}, \mathfrak{h})$. Thus let \mathfrak{g} be a Lie algebra, \mathfrak{h} a Lie subalgebra of \mathfrak{g}, \mathfrak{m} a complementary subspace of \mathfrak{h} in \mathfrak{g} such that $[\mathfrak{m}, \mathfrak{h}] \leq \mathfrak{m}$. For $\mathfrak{X}, \mathfrak{Y} \in \mathfrak{m}$ we define XY in \mathfrak{m} and $\mathfrak{h}(\mathfrak{X}, \mathfrak{Y})$ in \mathfrak{h} by requiring that $[XY] = XY + \mathfrak{h}(\mathfrak{X}, \mathfrak{Y})$. We regard \mathfrak{m} as a nonassociative algebra with respect to the product XY. Then \mathfrak{m} is clearly anti-commutative and $\text{ad}_\mathfrak{m} \mathfrak{U}$ is a derivation of \mathfrak{m} for $\mathfrak{U} \in \mathfrak{h}$ (by (6)).

Lemma 2. Let \mathfrak{n} be an $\mathfrak{ad} \mathfrak{h}$-stable ideal of \mathfrak{m}. Let $\mathfrak{q} = \mathfrak{n} + \mathfrak{h}(\mathfrak{n}, \mathfrak{n})$. If $[\mathfrak{n}, \mathfrak{n}'] \leq \mathfrak{q}$ for some complementary subspace \mathfrak{n}' of \mathfrak{n} in \mathfrak{m}, then \mathfrak{q} is an ideal of \mathfrak{g}.

Proof. $[\mathfrak{q}, \mathfrak{n}] \leq [\mathfrak{n}, \mathfrak{n}] + [\mathfrak{h}(\mathfrak{n}, \mathfrak{n}), \mathfrak{n}] \leq \mathfrak{nn} + \mathfrak{h}(\mathfrak{n}, \mathfrak{n}) + \mathfrak{n}$ by (3) since \mathfrak{n} is ad \mathfrak{h}-stable. Thus $[\mathfrak{q}, \mathfrak{n}] \leq \mathfrak{q}$. And $[\mathfrak{q}, \mathfrak{h}] \leq \mathfrak{q}$ since \mathfrak{q} is an ad \mathfrak{h}-stable and $\mathfrak{q} = \mathfrak{n} + [\mathfrak{n}, \mathfrak{n}]$. It remains to show that $[\mathfrak{q}, \mathfrak{n}'] \leq \mathfrak{q}$. But we have

$$[\mathfrak{q}, \mathfrak{n}'] \leq \mathfrak{nn}' + \mathfrak{h}(\mathfrak{n}, \mathfrak{n}') + [\mathfrak{h}(\mathfrak{n}, \mathfrak{n}), \mathfrak{n}'],$$

$$[\mathfrak{h}(\mathfrak{n}, \mathfrak{n}), \mathfrak{n}'] \leq [\mathfrak{nn}, \mathfrak{n}'] + [\mathfrak{n}, \mathfrak{n}'] \leq [\mathfrak{n}, \mathfrak{n}'] + [\mathfrak{n}, [\mathfrak{n}, \mathfrak{n}']].$$

$$\mathfrak{h}(\mathfrak{n}, \mathfrak{n}') \leq \mathfrak{nn}' + [\mathfrak{n}, \mathfrak{n}'].$$

But since $[\mathfrak{n}, \mathfrak{n}'] \leq \mathfrak{q}$ by hypothesis, \mathfrak{q} contains $[\mathfrak{h}(\mathfrak{n}, \mathfrak{n}), \mathfrak{n}']$ (using (3)) and $\mathfrak{h}(\mathfrak{n}, \mathfrak{n}')$. Since $\mathfrak{nn}' \leq \mathfrak{n}$ (n is an ideal of \mathfrak{m}), $[\mathfrak{q}, \mathfrak{n}'] \leq \mathfrak{q}$. Thus \mathfrak{q} is an ideal of \mathfrak{g}.

Lemma 3. Suppose that the Killing form $B(\cdot, \cdot)$ of \mathfrak{g} is nondegenerate and that $B(\cdot, \mathfrak{h}) = 0$. Then $B(\cdot, \mathfrak{m})$ is nondegenerate and invariant, i.e., $B(\mathfrak{XY}, \mathfrak{Z}) = B(\mathfrak{X}, \mathfrak{YZ})$. Moreover every ad \mathfrak{h}-stable ideal \mathfrak{n} of \mathfrak{m} satisfies $[\mathfrak{n}, \mathfrak{n}'] = 0$ where $\mathfrak{n}' = \{\mathfrak{X} \in \mathfrak{m} | B(\mathfrak{X}, \mathfrak{n}) = 0\}$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. For $X, Y, Z \in m$ we have:

$$B(X, Y, Z) = B([X, Y], Z) = B(X, [Y, Z]) = B(X, YZ).$$

Now $B(n^i, n^j) = 0$ implies that $0 = B(n^i, n^j) = B(n^i, n^j)$. And $B(n, n^j) = 0$ implies that $B(n^i, n^j) = 0$. Thus $B(n^i, n^j) = B(n^i, n^j) = B(n^i, n^j)$.

Theorem 1. Let g be a split simple Lie algebra. Let \mathfrak{h} be a reductive subalgebra of g which is normalized by a split Cartan subalgebra c of g (i.e., \mathfrak{h} is reductive and regular [2]). Then \mathfrak{h} has an $\text{ad}(c + \mathfrak{h})$-stable complement m. Such an m is either simple or abelian ($m^2 = 0$).

Proof. We first show that $c + \mathfrak{h}$ is reductive. Letting $g = g_0 + \sum g_a$ be the root space decomposition of g, it suffices to show that for $a \neq 0$, $g_a \subseteq c + \mathfrak{h}$ implies $g_{-a} \subseteq c + \mathfrak{h}$ [7, p. 669]. Since $[c, \mathfrak{h}] \subseteq \mathfrak{h}$ we have $[c, b] \subseteq b$ where b is the center of \mathfrak{h}. Thus $c + b$ is solvable. Thus $\text{ad}(c + b)$ is triangularizable and $0 = \text{ad}(c, b) = \text{ad}(c, b)$ since $\text{ad}(c, b) \subseteq \text{ad}(b)$ and $\text{ad}(b)$ consists of semisimple transformations. Thus $[c, b] = 0$ and $b \subseteq c = g_a$. Now $\mathfrak{h} = b \oplus \mathfrak{h}^{(1)}$ with $\mathfrak{h}^{(1)}$ semisimple, since \mathfrak{h} is reductive. Let α be a nonzero root such that $g_{-\alpha} \subseteq c + \mathfrak{h}$. Then since $\mathfrak{h}^{(1)}$ is ad-c-stable and $c + \mathfrak{h} = g_0 + b + \mathfrak{h}^{(1)} = g_0 + \mathfrak{h}^{(1)}$, we have $g_{-\alpha} \subseteq \mathfrak{h}^{(1)}$. Now the restriction of the Killing form $B(\ , \)$ of g to $\mathfrak{h}^{(1)}$ is nondegenerate since it is the trace form of a faithful representation of the semisimple Lie algebra $\mathfrak{h}^{(1)}$ (see [3, p. 69]). Thus $B(g_{-\alpha}, \mathfrak{h}^{(1)}) = 0$. Since $B(g_{-\alpha}, g_0) = 0$ for $\alpha + \beta \neq 0$, it follows $g_{-\alpha} \subseteq \mathfrak{h}^{(1)}$. Thus $g_{-\alpha} \subseteq c + \mathfrak{h}$ implies $g_{-\alpha} \subseteq c + \mathfrak{h}$ and $c + \mathfrak{h}$ is reductive.

It follows that \mathfrak{h} has a complement m stable under $\text{ad}(c + \mathfrak{h})$. Any complement m is the sum of $m \cap g_0$ and those root spaces g_a not occurring in \mathfrak{h}. In particular, $g_a \subseteq m$ implies $g_{-a} \subseteq m$.

We now show that such an m is either simple or abelian. Assume that $m^2 \neq 0$ and m not simple. Then by Lemma 1, m has a proper Der m-stable ideal. Since m is $\text{ad}(c + \mathfrak{h})$-stable, $\text{ad}(c + \mathfrak{h})$ consists of derivations of m. Thus m has a proper ideal n stable under $\text{ad}(c + \mathfrak{h})$.

Let σ be an automorphism of g such that $\sigma|c = -id_c$ and $g_{-\alpha} = g_{-\alpha}$ for all α (see [3, p. 127]). Then the above discussion shows that m and \mathfrak{h} are σ-stable. It follows that $(XY)^\sigma = X^\sigma Y^\sigma$ and $(\mathfrak{h}(X, Y))^\sigma = \mathfrak{h}(X^\sigma, Y^\sigma)$. Thus $\sigma|m$ is an automorphism of m and n^σ is an ideal of m. Since $[n^\sigma, c + \mathfrak{h}] = [n^\sigma, (c + h)^\sigma] = [n, c + \mathfrak{h}]^\sigma \subseteq n^\sigma$, n^σ is also $\text{ad}(c + \mathfrak{h})$-stable.

Suppose that one of the ideals $m \cap n^\sigma, n + n^\sigma$ is proper in m. Call it ν. Then ν is the sum of $\nu \cap g_0$ and root spaces g_a. Moreover $g_{-\alpha} \subseteq \nu$ implies $g_{-\alpha} \subseteq \nu$. It follows that $m = m \cap g_0 + \nu + \nu^\perp$ where $\nu^\perp = \{X \in m \mid B(X, \nu) = 0\}$ (thus $g_a \subseteq m - g_0$ and $g_{-\alpha} \subseteq \nu$ implies $g_{-\alpha} \subseteq \nu$ which implies $B(g_a, \nu) = 0$). We use this to show that $m = m + \mathfrak{h}(\nu, \nu)$ is an ideal of g. By Lemma 2 it suffices to show that $[\nu, \nu^\perp] \subseteq \nu$ where $\nu^\perp = \nu^\perp + m \subseteq g_0$. But $[\nu, m \cap g_0] \subseteq [\nu, c] \subseteq \nu$. Thus it suffices to show that $[\nu, \nu^\perp]$
1967] HOMOGENEOUS SPACES AND REDUCTIVE SUBALGEBRAS 145

Thus \(B(\{p, p^1\}, c + h) = B(p^1, \{p, c + h\}) = B(p^1, p) = 0 \) and \([p, p^1] \subseteq (c + h)^1 \subseteq m. \)

Thus \(h(p, p^1) = [p, p^1] + p^1 \subseteq m \) and \(h(p, p^1) = 0. \) Thus \([p, p^1] = p^1 \subseteq p \subseteq q \) and \(q \)

is an ideal of \(g. \) Thus \(q = g \) and \(n \) cannot be proper in \(m, \) a contradiction.

Thus we have \(n \cap n^2 = 0 \) and \(n + n^2 = m. \) Thus \(n \cap g_0 = (n \cap g_0)^2 = 0 \) (since

\(\sigma|g_0 = -id_{g_0}. \) Thus \(m \cap g_0 = n \cap g_0 + (n \cap g_0)^2 = 0. \) It follows that \(B(m, h) = 0 \)

(e.g., \(m = \sum_{\alpha \in S} g_{\alpha} \) for some set \(S \) of nonzero roots, and \(\alpha \in S \) implies \(-\alpha \in S \) which

implies \(g_{-\alpha} \notin h \) and therefore \(B(g_{\alpha}, h) = 0). \) Also \(B(n, n) = 0 \) (e.g., \(n = \sum_{\alpha \in T} g_{\alpha} \)

for some set \(T \) of nonzero roots, and \(\alpha \in T \) implies \(-\alpha \notin T \) which implies \(B(g_{\alpha}, n) = 0). \)

It follows from Lemma 3 that \([n, n] = m = 0. \) Thus \(n^2n^2 = 0. \) Finally

\(m^2 = (n + n^2)^2 = n^2 + n(n^2) = 0. \) a contradiction.

3. The semisimple case. We now consider the reductive pair \((g, h)\) where \(g \) is a

simple Lie algebra and \(h \) is a semisimple Lie subalgebra. We note that the Killing

form \(B(\ , \) \) of \(g \) restricted to \(h \) is nondegenerate. For if \(U, V \in h, \) then \(B(U, V) = \text{tr} \ ad_h \ U \ ad_h \ V \)

is the trace form of the representation \(ad_h \) in \(g, \) and is non-

degenerate by Cartan's criterion [3, p. 69]. (Note that \(ad_h \ U = 0 \) implies \(UF \)

is a one-dimensional ideal in the simple algebra \(g \) so that \(U = 0. \)) Thus if \(h^1 = \{X \in g \mid B(X, h) = 0\}, \)

then \(h \cap h^1 = 0 \) and therefore \(g = h^1 + h. \) And \(B([h^1, h], h) = B(h^1, h) = 0. \) So that for \(m = h^1, \)

\((g, h)\) is a reductive pair with \((fixed) \) decom-

position \(g = m + h. \) Note that since \(m = h^1, \) the Killing form \(B, \)

restricted to \(m, \) is a

nondegenerate invariant form, i.e., \(B(XY, Z) = B(X, YZ). \)

Theorem 2. Let \(g \) be a simple Lie algebra and \(h \) a semisimple subalgebra. Then

\((g, h)\) is a reductive pair with \(m = h^1. \) Furthermore \(m^2 = 0 \) or \(m \) is simple.

Proof. Assume \(m^2 \neq 0. \) Then we have from Lemma 1 that \(m \) has a minimal

proper ad \(h\)-stable ideal \(n. \) Then since \(B \) is a nondegenerate invariant form on \(m \)

and \(B([XU], Y) = B(X, [UY]) \) for \(X, Y \in m, U \in h, \) we have \(n^1 = \{X \in m \mid B(X, n) \)

= 0) is an ad \(h\)-stable ideal of \(m. \) Thus \(n \cap n^1 \) is an ad \(h\)-stable ideal of \(m; \) and

since \(n \) is minimal, either \(n \cap n^1 = 0 \) or \(n \cap n^1 = n. \)

In case \(n \cap n^1 = 0 \) we have \(m = n \oplus n^1. \) And we know from Lemma 3 that

\([n, n^1] = 0. \) Thus \(q = n + h(n, n) \) is a proper ideal of \(g \) by Lemma 2. This contradiction

shows we must have \(n \cap n^1 = n. \)

In the case \(n \cap n^1 = n \) we can find an ad \(h\)-stable complement, \(n' \) (since ad \(h\) is

semisimple and therefore completely reducible); and we write \(m = n + n'. \) Thus since

\(B(n, n) = 0, \) to show that \(n = 0 \) it suffices to show \(B(n, n') = 0. \)

To find a formula for \(B(X, Y) \) with \(X, Y \in m, \) define \(\epsilon(X) \) and \(\delta(X) \) by

\[\epsilon(X): m \to h: \quad Y \mapsto h(X, Y) = \epsilon(X)(Y), \]

\[\delta(X): h \to m: \quad U \mapsto \{X, U\} = \delta(X)(U), \]

where \(U \in h. \) Using these maps we have for any \(Z, X \in m, U \in h \) that

\((ad_h Z)(X) = [Z, X] = ZX + h(Z, X) \)

\(= (L(Z) + \epsilon(Z))(X) \)

\((ad_h Z)(U) = [Z, U] = \delta(Z)(U) \)
and therefore
\[\text{ad}_g Z = \begin{pmatrix} L(Z) & e(Z) \\ \delta(Z) & 0 \end{pmatrix}. \]

From this, note that since \(g \) is simple \(0 = \text{tr} \text{ad}_g Z = \text{tr} L(Z) \). Also since \(\mathfrak{h} = [\mathfrak{h}, \mathfrak{h}] \) is semisimple, and since \(\mathfrak{h} \rightarrow \text{ad}_m \mathfrak{h} : U \rightarrow \text{ad}_m U \) and \(\mathfrak{h} \rightarrow \text{ad}_g \mathfrak{h} : U \rightarrow \text{ad}_g U \) are representations of \(\mathfrak{h} \), we have \(\text{tr} \text{ad}_m U = \text{tr} \text{ad}_g U = 0 \) for all \(U \in \mathfrak{h} \).

Next for \(X, Y \in \mathfrak{m} \) define the linear transformation \(\sigma(X, Y) : \mathfrak{m} \rightarrow \mathfrak{m} \) by \(\sigma(X, Y)Z = [X, \mathfrak{h}(Y, Z)] \). From (3) we have the identity
\[\text{ad}_m \mathfrak{h}(X, Y) - \sigma(X, Y) + \sigma(Y, X) = [L(X), L(Y)] - L(XY) \]
and therefore \(\text{tr} \sigma(X, Y) = \text{tr} \sigma(Y, X) \). From this and the matrix for \(\text{ad}_g Z \) we obtain for \(X, Y \in \mathfrak{m} \) that
\[B(X, Y) = \text{tr} \text{ad}_g X \text{ad}_g Y \]
\[= \text{tr} L(X)L(Y) + \text{tr} e(X)e(Y) + \text{tr} \delta(X)
\]
\[= \text{tr} L(X)L(Y) + \text{tr} \delta(Y)e(X) + \text{tr} \delta(X)e(Y) \]
\[= \text{tr} L(X)L(Y) + \text{tr} \sigma(Y, X) + \text{tr} \sigma(X, Y) \]
\[= \text{tr} L(X)L(Y) + 2 \text{tr} \sigma(X, Y), \]
using for the third equality that if \(S \in \text{Hom}(V, W) \) and \(T \in \text{Hom}(W, V) \) for vector spaces \(V \) and \(W \), then \(\text{tr} ST = \text{tr} TS \).

Now recall that in the decomposition \(\mathfrak{m} = \mathfrak{n} + \mathfrak{n}' \) we must show \(B(n, n') = 0 \). Thus for \(X \in \mathfrak{n}, Y \in \mathfrak{n}' \) we have (from the fact that \(\mathfrak{n} \) is an ideal and \(\mathfrak{n}\mathfrak{n} = 0 \)) the matrices
\[L(X) = \begin{pmatrix} 0 & 0 \\ X_{11} & 0 \end{pmatrix} \] and \(L(Y) = \begin{pmatrix} Y_{11} & 0 \\ Y_{21} & Y_{22} \end{pmatrix} \)
and therefore \(\text{tr} L(X)L(Y) = 0 \) and \(B(X, Y) = 2 \text{tr} \sigma(X, Y) \).

To find the matrix for \(\sigma(X, Y) \) (with \(X \in \mathfrak{n}, Y \in \mathfrak{n}' \) let \(Z \in \mathfrak{n}, Z' \in \mathfrak{n}' \). Then
\[\sigma(X, Y)Z = [\mathfrak{h}(Z, Y), X] \in \mathfrak{n}, \]
\[\sigma(X, Y)Z' = [\mathfrak{h}(Z', X), X] \in \mathfrak{n}. \]

Therefore
\[\sigma(X, Y) = \begin{pmatrix} \sigma_{11} & 0 \\ \sigma_{21} & 0 \end{pmatrix} \]
and \(\text{tr} \sigma(X, Y) = \text{tr} \sigma_{11} = \text{tr}_n \sigma(X, Y) \). To find the action of \(\sigma(X, Y) \) on \(\mathfrak{n} \) again let \(Z \in \mathfrak{n} \). Then since \(\mathfrak{n} \) is an ideal, \(\mathfrak{n}\mathfrak{n} = 0 \) and \(\mathfrak{h}(n, n) = 0 \), we have from (3) that
\[0 = J(Z, X, Y) = [Z, \mathfrak{h}(X, Y)] + [X, \mathfrak{h}(Y, Z)] \]
\[= [- \text{ad}_n \mathfrak{h}(X, Y) + \sigma(X, Y)]Z. \]

Therefore on \(\mathfrak{n} \) we have \(\sigma(X, Y) = \text{ad}_n \mathfrak{h}(X, Y) \) and since \(U \rightarrow \text{ad}_n U \) is a representation of the semisimple Lie algebra \(\mathfrak{h} \), \(0 = \text{tr} \text{ad}_n \mathfrak{h}(X, Y) = \text{tr}_n \sigma(X, Y) \). Thus \(B(n, n') = 0 \) and \(\mathfrak{m} \) is simple, a contradiction. Thus either \(\mathfrak{m}\mathfrak{m} = 0 \) or \(\mathfrak{m} \) is simple.
4. **Remarks.** (i) The above discussion for \mathfrak{h} semisimple holds for \mathfrak{h} reductive in \mathfrak{g} except for the assertion that $\text{tr \ ad}_\mathfrak{n} \mathfrak{h}(X, Y) = 0$ and its consequences. The authors do not know whether the theorem holds for all reductive \mathfrak{h}.

(ii) If \mathfrak{h} is the zero-space of a derivation of \mathfrak{g} or the one-space of an automorphism of \mathfrak{g}, then \mathfrak{h} is reductive and contains a regular element of \mathfrak{g} [1]. Thus if \mathfrak{g} is simple and the underlying field algebraically closed, the associated m is simple or abelian by Theorem 1.

(iii) It would be of value to determine all pairs $(\mathfrak{g}, \mathfrak{h})$ with \mathfrak{g} semisimple for which an associated m is simple. We now give an example of one nontrivial such pair $(\mathfrak{g}, \mathfrak{h})$ where \mathfrak{g} is not simple. Thus let $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ (direct) where the \mathfrak{g}_i ($i = 1, 2$) are real compact simple Lie algebras. Suppose that \mathfrak{b} is a simple subalgebra of \mathfrak{g}_1, \mathfrak{b}' a simple subalgebra of \mathfrak{g}_2, $B \rightarrow B'$ an isomorphism from \mathfrak{b} onto \mathfrak{b}'. Let $\mathfrak{h} = \{B + B' \mid B \in \mathfrak{b}\}$ and $m = \mathfrak{h}^\perp$. Then \mathfrak{g}_1, \mathfrak{g}_2, \mathfrak{b}, and \mathfrak{b}' can easily be chosen such that $m^2 \neq 0$. We claim that for any such choice, m is simple. By Lemma 1, it suffices to show that m has no proper $\text{ad} \mathfrak{h}$-stable ideal. If n were such an ideal, then since the Killing form is negative definite on \mathfrak{g}, $m = n \oplus n^\perp$. It is now clear that $n + \mathfrak{h}(n, n)$ is an ideal of \mathfrak{g} by Lemma 2, since $[n, n^\perp] = 0$ by Lemma 3. But then $n + \mathfrak{h}(n, n) = \mathfrak{g}_1$ or \mathfrak{g}_2. But by construction, $\mathfrak{h} \cap \mathfrak{g}_1 = \mathfrak{h} \cap \mathfrak{g}_2 = 0$. Thus $n = \mathfrak{g}_1$ or \mathfrak{g}_2. This is impossible since $\mathfrak{B}(n, \mathfrak{h}) = 0$ whereas $\mathfrak{B}(\mathfrak{g}_i, \mathfrak{h}) \neq 0$ for $i = 1, 2$.

Bibliography