ISOTOPY CLASSES OF IMBEDDINGS

BY

C. W. PATTY

1. Introduction. The deleted product space X^* of a space X is $X \times X - \Delta$. If X is a finite polyhedron, let

$$P(X^*) = \bigcup \{ \sigma \times \tau \mid \sigma \text{ and } \tau \text{ are simplexes of } X \text{ and } \sigma \cap \tau = \emptyset \}.$$

Hu [3] has shown that X^* and $P(X^*)$ are homotopically equivalent. In [4], the author has shown that if Y is a triod, then $P(Y^*)$ is a circle, and that up to homeomorphism the triod is the only tree (finite, contractible, 1-dimensional polyhedron) with this property. It is also shown in [4] that if X is a tree, then $H_1(X^*, Z)$ where Z is the integers, is a free abelian group. T. R. Brahana suggested to the author that if X is a tree, then there might be a connection between the number of generators of $H_1(X^*, Z)$ and the number of isotopy classes of imbeddings of the triod in X and that we might be able to extend this to higher dimensions.

In §2, we obtain a formula for computing the number of isotopy classes of imbeddings of the triod in a tree and show that there is a definite relation between this number and the 1-dimensional Betti number of the deleted product of the tree.

We show that up to homeomorphism there are at least two finite, contractible, 2-dimensional polyhedra, C and θ, which have the property that $P(C^*)$ and $P(\theta^*)$ are homeomorphic to the 2-sphere. There is at least one more finite, contractible, 2-dimensional polyhedron Λ whose deleted product has the homotopy type of the 2-sphere. However C can be imbedded in both θ and Λ, and in §4, we prove a collection of theorems which give a combinatorial method for computing the number of isotopy classes of imbeddings of C in a finite, contractible, 2-dimensional polyhedron.

The connection between the number of isotopy classes of imbeddings of C in a finite, contractible, 2-dimensional polyhedron X and the 2-dimensional Betti number of the deleted product of X is to be investigated in a forthcoming paper.

2. Imbedding the triod. Throughout this section, let Y denote a triod, let y_0 denote the vertex of Y of order 3, and let X denote a tree which is not an arc.

Gottlieb [2] defined a branch point as follows: Let S be a pathwise connected space. A point x of S is a branch point of S if $S - \{x\}$ has at least three path-components.

Theorem 1. If $f: Y \to X$ is an imbedding, then $f(y_0)$ is a branch point of X and $f(Y - \{y_0\})$ intersects exactly three path-components of $X - \{f(y_0)\}$.

Presented to the Society, January 25, 1966; received by the editors June 27, 1966.

232
Proof. Let P_1, P_2, and P_3 denote the three path-components of $Y - \{y_0\}$, and let $Q_i, (i = 1, 2, 3)$ denote the path-component of $X - \{f(y_0)\}$ which contains $f(P_i)$. Suppose $Q_i = Q_i$ for some $i \neq j$. Let $p_i \in f(P_i)$ and $p_j \in f(P_j)$. Then there exists a homeomorphism $h : I \to X - \{f(y_0)\}$ such that $h(0) = p_i$ and $h(1) = p_j$. Now there exists a homeomorphism $g : I \to Y$ such that $g(0) = f^{-1}(p_i)$ and $g(1) = f^{-1}(p_j)$. Since $g(t) = y_0$ for some $t \in I$, $f(g(I)) \cup h(I)$ contains a simple closed curve. This contradicts the fact that X is a tree.

THEOREM 2. If $f : Y \to X$ is an imbedding and $H : Y \times I \to X$ is an isotopy such that $H(y, 0) = f(y)$ for all $y \in Y$, then $H(y_0, t) = f(y_0)$ for all $t \in I$.

Proof. Define a path $\sigma : I \to X$ by $\sigma(t) = H(y_0, t)$. Suppose there exists $t_1 \in I$ such that $\sigma(t) \neq f(y_0)$. Then there exists $t_2 \in I$ such that $\sigma(t_1)$ is not a vertex of X. Thus $H(y_0, t_1) = \sigma(t_1)$ is not a branch point of X. But $h_1 : Y \to X$ defined by $h_1(y) = H(y, t_1)$ is an imbedding. Therefore, by Theorem 1, $h_1(y_0)$ is a branch point.

THEOREM 3. If $f, g : Y \to X$ are imbeddings, then f is isotopic to g if and only if $f(y_0) = g(y_0)$ and, for each path-component P of $Y - \{y_0\}$, $f(P)$ and $g(P)$ are contained in the same path-component of $X - \{f(y_0)\}$.

Proof. Suppose there exists an isotopy $H : Y \times I \to X$ such that $H(y, 0) = f(y)$ and $H(y, 1) = g(y)$ for each $y \in Y$. Then $f(y_0) = g(y_0)$ by Theorem 2. Suppose there exist a path-component P of $Y - \{y_0\}$ and path-components Q_1 and Q_2 of $X - \{f(y_0)\}$ such that $Q_1 \neq Q_2$, $f(P) \subset Q_1$, and $g(P) \subset Q_2$. Let $y_1 \in P$. Define a path $\sigma : I \to X$ by $\sigma(t) = H(y_1, t)$. Then $\sigma(0) = f(y_1) \in Q_1$ and $\sigma(1) = g(y_1) \in Q_2$. Since Q_1 and Q_2 are path-components of $X - \{f(y_0)\}$ and $Q_1 \neq Q_2$, $\sigma(t_1) = f(y_0)$ for some $t_1 \in I$. Now $h_1 : Y \to X$ defined by $h_1(y) = H(y, t_1)$ is an imbedding. But $h_1(y_1) = H(y_1, t_1) = \sigma(t_1) = f(y_0)$, and $h_1(y_0) = H(y_0, t_1) = f(y_0)$. Thus we have a contradiction.

If $f(y_0) = g(y_0)$, and, for each path-component P of $Y - \{y_0\}$, $f(P)$ and $g(P)$ are contained in the same path-component of $X - \{f(y_0)\}$, then it is clear that f is isotopic to g.

THEOREM 4. If m is the order of a vertex of maximum order in X, and, for each $j = 3, 4, \ldots, m$, p_j is the number of vertices of order j, then the number of isotopy classes of imbeddings of Y in X is $\sum_{j=3}^m j(j-1)(j-2)p_j$.

Proof. Let p be the number of vertices of X of order ≥ 3, and for each $i = 1, 2, \ldots, p_i$, let n_i be the order of the ith vertex. Then it follows from Theorems 1, 2, and 3 that the number of isotopy classes of imbeddings of Y in X is $\sum_{j=1}^n n_i(n_i-1)(n_i-2)$. But $\sum_{j=1}^p n_i(n_i-1)(n_i-2) = \sum_{j=3}^m j(j-1)(j-2)p_j$.

THEOREM 5. If m is the order of a vertex of maximum order in X, and, for each $j = 3, 4, \ldots, m$, p_j is the number of vertices of order j, then $H_1(X^*, Z)$ is the free abelian group on $\sum_{j=3}^m [(j-2)(j-1)p_j] - 1$ generators.
Proof. Let \(p \) be the number of vertices of \(X \) of order \(\geq 3 \), and for each \(i = 1, 2, \ldots, p \), let \(n_i \) be the order of the \(i \)th vertex. By Theorem 3.4 of [5], \(H_1(X^*, Z) \) is the free abelian group on \(\sum_{i=1}^{p} [(n_i - 1)^2 - (n_i - 1)] - 1 \) generators. But

\[
\sum_{i=1}^{p} [(n_i - 1)^2 - (n_i - 1)] - 1 = \sum_{j=3}^{\infty} [(j-1)(j-2)p_j] - 1.
\]

Thus, by comparing the formulas in Theorems 4 and 5, we see that there is a definite relation between the number of isotopy classes of imbeddings of \(Y \) in \(X \) and the 1-dimensional homology group of the deleted product of \(X \).

3. The 2-dimensional analog of the triod. For each \(i = 1, 2, 3 \), let \(\sigma_i \) be a 2-simplex, and let \(r \) be a 1-simplex. Throughout the remainder of this paper, let \(C \) denote the polyhedron, consisting of these simplexes and their faces, which satisfies the following conditions:

1. \(r \) is not a face of \(\sigma_i \) for any \(i \),
2. there is a vertex \(c_0 \) which is a vertex of \(r \) and of \(\sigma_i \) for each \(i \),
3. for each \(i < j \), \(\sigma_i \cap \sigma_j \) is a 1-simplex \(r_{ij} \), and
4. \(r_{ij} \neq r_{km} \) unless \(i = k \) and \(j = m \).

The polyhedron \(C \) is a cone with a "sticker" attached to its vertex \(c_0 \). We will continue to let \(r \) denote the 1-simplex described above. Also we will denote \(C - r \cup \{c_0\} \) by \(D \). Note that \(D \) is a disk.

Theorem 6. The polyhedron \(P(C^*) \) is homeomorphic to the 2-sphere.

Proof. For each \(i = 1, 2, 3 \), let \(r_i \) denote the 1-face of \(\sigma_i \) which does not have \(c_0 \) as a vertex. For each \(i < j \), let \(c_{ij} \) denote the other vertex of \(r_{ij} \), and let \(c \) denote the other vertex of \(r \). The polyhedron \(P(C^*) \) consists of the following 2-cells and their faces:

- \(\sigma_1 \times c_{23} \), \(c_{12} \times \sigma_3 \), \(r_{12} \times r_3 \), \(r_2 \times r \)
- \(\sigma_1 \times c \), \(c_{13} \times \sigma_2 \), \(r_{13} \times r_2 \), \(r_3 \times r_{12} \)
- \(\sigma_2 \times c_{13} \), \(c_{23} \times \sigma_1 \), \(r_{23} \times r_1 \), \(r_0 \times r \)
- \(\sigma_2 \times c \), \(c \times \sigma_1 \), \(r_{1} \times r_{23} \), \(r \times r_1 \)
- \(\sigma_3 \times c_{12} \), \(c \times \sigma_2 \), \(r_{1} \times r \), \(r \times r_2 \)
- \(\sigma_3 \times c \), \(c \times \sigma_3 \), \(r_2 \times r_{13} \), \(r \times r_3 \)

The proof now consists of only routine verifications, and hence it is omitted.

For each \(i = 1, 2, 3 \), let \(\tau_i \) be a 2-simplex, and suppose there is a 1-simplex \(s \) which is a face of \(\tau_i \) for each \(i \). Let \(u \) and \(v \) denote the vertices of \(s \), and for each \(i \), let \(u_i \) denote the vertex of \(\tau_i \) which is different from \(u \) and \(v \). Also for each \(i \), denote the 1-faces of \(\tau_i \) different from \(s \) by \(s_{11} \) and \(s_{12} \) so that \(s_{11} \cap s_{12} \neq \emptyset \neq s_{12} \cap s_{12} \) but \(s_{11} \cap s_{12} = \emptyset \) for \(i \neq j \). Let \(\theta \) denote the polyhedron consisting of these simplexes.

Theorem 7. The polyhedron \(P(\theta^*) \) is homeomorphic to the 2-sphere.
Proof. The polyhedron $P(\theta^*)$ consists of the following 2-cells and their faces:

\[
\begin{align*}
\tau_1 \times U_2 & \quad U_1 \times \tau_2 & \quad S_{11} \times S_{22} & \quad S_{22} \times S_{11} \\
\tau_1 \times U_3 & \quad U_1 \times \tau_3 & \quad S_{11} \times S_{22} & \quad S_{22} \times S_{21} \\
\tau_2 \times U_1 & \quad U_2 \times \tau_1 & \quad S_{12} \times S_{21} & \quad S_{91} \times S_{12} \\
\tau_2 \times U_3 & \quad U_2 \times \tau_3 & \quad S_{12} \times S_{31} & \quad S_{31} \times S_{22} \\
\tau_3 \times U_1 & \quad U_3 \times \tau_1 & \quad S_{21} \times S_{12} & \quad S_{92} \times S_{11} \\
\tau_3 \times U_2 & \quad U_3 \times \tau_2 & \quad S_{21} \times S_{22} & \quad S_{92} \times S_{21}
\end{align*}
\]

Again the proof now consists of only routine verifications.

Suppose we add a 2-simplex σ_4 to the polyhedron C so that r and r_{12} are faces of σ_4. Let r_4 denote the remaining 1-face of σ_4, and let Λ denote the polyhedron obtained in this manner.

Theorem 8. The polyhedron $P(\Lambda^*)$ has the homotopy type of the 2-sphere.

Proof. The polyhedron $P(\Lambda^*)$ consists of the following cells and their faces:

\[
\begin{align*}
\sigma_3 \times r_4 & \quad \sigma_1 \times c & \quad c \times \sigma_1 & \quad r_1 \times r \\
\sigma_4 \times r_3 & \quad \sigma_2 \times c_{13} & \quad c \times \sigma_2 & \quad r_2 \times r_{13} \\
r_4 \times \sigma_3 & \quad \sigma_2 \times c & \quad r_{10} \times r_3 & \quad r_3 \times r \\
r_3 \times \sigma_4 & \quad c_{13} \times \sigma_2 & \quad r_{23} \times r_1 & \quad r \times r_1 \\
\sigma_1 \times c_{23} & \quad c_{23} \times \sigma_1 & \quad r_1 \times r_{23} & \quad r \times r_2
\end{align*}
\]

It is now a routine matter to verify that $P(\Lambda^*)$ is homotopically equivalent to the 2-sphere.

It is clear that C can be imbedded in both θ and Λ.

4. Imbedding C. Throughout this section, let X denote a finite, contractible, 2-dimensional polyhedron.

Definition 1. A point $x \in X$ is called a c-point of X if there exist 2-simplexes, $\tau_1, \tau_2, \ldots, \tau_n$, of X and a simplex τ of X such that:

1. τ is not a face of τ_i for any i,
2. x is a vertex of τ and of τ_i for each i,
3. $\tau_n \cap \tau_1$ is a 1-simplex s_n,
4. for each $i=1, 2, \ldots, n-1$, $\tau_i \cap \tau_{i+1}$ is a 1-simplex s_i, and
5. $\tau_i \cap \tau_j = x$ unless i and j satisfy the conditions of either (3) or (4).

Note. By a collection of 2-simplexes satisfying Definition 1, we mean the 2-simplexes $\tau_1, \tau_2, \ldots, \tau_n$, i.e. we do not include τ even though it may be a 2-simplex.

Theorem 9. If $f: C \to X$ is an imbedding, then $f(c_0)$ is either a c-point of X or an interior point of a 1-simplex which is a face of at least three 2-simplexes.

Proof. First suppose $f(c_0)$ is not a vertex of X. Then $f(c_0)$ is an interior point of either a 1-simplex or a 2-simplex. Since the interior of C is not homeomorphic to a subset of an open disk, it is easy to see that $f(c_0)$ cannot be either an interior point of a 2-simplex or an interior point of a 1-simplex which is a face of less than three 2-simplexes.
Now suppose \(f(c_0) \) is a vertex of \(X \). Since \(f \) is an imbedding, there is an arbitrarily small neighborhood \(U \) of \(f(c_0) \) such that \(U \) contains a subset which is homeomorphic to \(C \). Therefore \(f(c_0) \) is a c-point.

Notation. If \(t \) is a point of a 1-simplex \(s = \langle x, y \rangle \), then there exists a number \(\lambda \) such that \(0 \leq \lambda \leq 1 \) and \(t = \lambda x + (1 - \lambda) y \). Let \(\{x, t\} = \{z = \mu x + (1 - \mu) y \mid \lambda \leq \mu \leq 1\} \).

Notation. If \(P \) is a locally finite polyhedron and \(v \) is a vertex of \(P \), let \(St(v, P) \) denote the open star of \(v \) in \(P \).

Theorem 10. If \(f: C \to X \) is an imbedding and \(f(c_0) \) is a c-point of \(X \), then there exists a unique collection \(C_t \) of 2-simplexes of \(X \) satisfying Definition 1 such that (1) \(f(C - r) \) intersects the interior of every simplex in \(C_t \) and (2) there exists a neighborhood \(U \) of \(f(c_0) \) such that \(f(C - r) \cap \text{int}(r) \cap U = \emptyset \). Moreover there is a point \(t_1 \) in \(r \) \((t_1 \neq c_0) \) such that \(f([c_0, t_1]) \cap \bigcup \{r_1 \mid r_1 \in C_t\} = \{f(c_0)\} \).

Proof. Since \(f \) is continuous, there is a neighborhood \(V \) of \(c_0 \) such that \(f(V) = \text{St}(f(c_0), X) \). Let \(C' \) be a subset of \(V \) which is homeomorphic to \(C \), and let \(\Gamma = \{\tau \mid \tau \text{ is a 2-simplex of } X \text{ and } \text{int}(\tau) \cap f(C' - r) \neq \emptyset\} \).

Since \(f(C') \) is homeomorphic to \(C \) and \(f(c_0) \) is a vertex, \(\Gamma \) contains a collection \(C_t \) of 2-simplexes satisfying Definition 1. Suppose there exists a 2-simplex \(\tau \in \Gamma - C_t \). Let \(\Gamma' = \{\tau \mid \tau \in \Gamma - C_t\} \). If \(\bigcup \{\tau \mid \tau \in \Gamma'\} \cap \bigcup \{\tau \mid \tau \in C_t\} = \{f(c_0)\} \), then \(f(C' - r) \) is not connected. Therefore there exist 1-simplexes \(s_1, s_2, \ldots, s_p \) such that \(f(c_0) \) is a vertex of \(s_k \) for each \(k \) and \(\bigcup \{\tau \mid \tau \in \Gamma'\} \cap \bigcup \{\tau \mid \tau \in C_t\} = \bigcup_{k=1}^p s_k \). Since \(f(C' - r) \subset \bigcup \{\tau \mid \tau \in \Gamma\} \), \(f(C' - r) - \bigcup_{k=1}^p s_k \) is not connected. Therefore

\[
(C' - r) - f^{-1}\left(\bigcup_{k=1}^p s_k\right)
\]

is not connected, and hence \(p > 1 \). Let \(K_1, K_2, \ldots, K_n \) be the components of \((C' - r) - f^{-1}(\bigcup_{k=1}^p s_k) \), and suppose \(K_1, K_2, \ldots, K_n \) are ordered so that \(K_i \) and \(K_{i+1} \) have a common limit point different from \(c_0 \). \(K_n \) and \(K_1 \) have a common limit point different from \(c_0 \), and \(f(K_i) \subset \bigcup \{\tau \mid \tau \in C_t\} \). Note that no three of the \(K_i \)'s can have a common limit point different from \(c_0 \). Without loss of generality, we may assume that \(f(K_2) \subset \bigcup \{\tau \mid \tau \in \Gamma\} \). Let \(p_1 \) be a common limit point of \(K_1 \) and \(K_2 \) such that \(p_1 \in C' \) and \(p_1 \neq c_0 \). There exists \(j (1 \leq j \leq p) \) such that \(f(p_1) \in s_j - \{f(c_0)\} \). Since \(C_t \) satisfies Definition 1, there exists \(i (3 \leq i \leq n) \) such that \(f(K_i) \subset \bigcup \{\tau \mid \tau \in C_t\} \) and \(f(K_i) \) and \(f(K_i) \) have a common limit point \(q_i \) in \(s_i - \{f(c_0)\} \). Thus \(f([c_0, q_1] \cap [f(c_0), f(p_1)]) \) contains a point \(x \) different from \(f(c_0) \). But \(x \in [f(c_0), q_1] \cap [f(c_0), f(p_1)] \) and \(x \neq f(c_0) \) implies that \(f^{-1}(x) \) is a limit point of \(K_1, K_2, \) and \(K_i \) which is different from \(c_0 \). Therefore \(\Gamma = C_t \).

Now let \(W \) be a neighborhood of \(c_0 \) such that \(\overline{W} \subset C' \), let \(U' \) be a neighborhood of \(f(c_0) \) which does not intersect \(f(C - W) \), and let \(U = U' \cap \text{St}(f(c_0), X) \). Let \(r \) be any simplex which is not a face of a simplex of \(C_t \). Then \(f(C' - r) \cap \text{int}(r) = \emptyset \).
Since $W \subset C'$, $f(C-C') \subset f(C-W)$. Let $x \in f(C-r)$. Then either $x \in f(C'-r)$ or $x \in f(C-C')$. If $x \in f(C'-r)$, then $x \notin \text{int}(\tau)$. If $x \in f(C-C')$, then $x \notin U$. Therefore $f(C-r) \cap \text{int}(\tau) \cap U = \emptyset$.

Suppose there is another collection C'_r of 2-simplexes of X satisfying Definition 1 and conditions (1) and (2) of the theorem. Then either there is a 2-simplex in C_r which is not in C'_r or there is a 2-simplex in C'_r which is not in C_r. Suppose τ is in C_r but not in C'_r. Then, since τ is not in C'_r, there is a neighborhood U of $f(c_0)$ such that $f(C-r) \cap U \cap \text{int}(\tau) = \emptyset$. But this contradicts the fact that τ is in C_r.

If $f(r) \cap \bigcup \{\tau \mid \tau \in C_j\} = \{f(c_0)\}$, then we can take t_r to be any point of r other than c_0. Suppose $f(r) \cap \bigcup \{\tau \mid \tau \in C_j\} \neq \{f(c_0)\}$. Let c be the other vertex of r, let

$$A = \{x = \mu c_0 + (1-\mu)c \mid 0 \leq \mu < 1 \text{ and } f(x) \in \bigcup \{\tau \mid \tau \in C_j\}\},$$

and let $\lambda = \inf \{\mu \mid \mu c_0 + (1-\mu)c \in A\}$. Suppose $\lambda = 1$. There exists a neighborhood U of $f(c_0)$ such that each point of $U \cap \bigcup \{\tau \mid \tau \in C_j\}$ is the image of a point of $(C-r) \cup \{c_0\}$ under f. Since f is continuous, there exists a neighborhood V of c_0 such that $f(V) \subset U$. Since $\lambda = 1$, there is a point $c' \in r \cap V$ such that $c' \neq c_0$ and $f(c') \in \bigcup \{\tau \mid \tau \in C_j\}$. Thus $f(c') \in \bigcup \{\tau \mid \tau \in C_j\} \cap U$, and hence f is not one-to-one. Therefore $\lambda < 1$. Let λ' be a number such that $\lambda < \lambda' < 1$, and let

$$t_r = \lambda' c_0 + (1-\lambda')c.$$
Note. We extend Definition 2 in the obvious way so that we can talk about a chain of 2-simplexes joining either two c-lines or a c-line and a simplex.

Theorem 11. Let \(f, g: C \to X \) be imbeddings such that \(f(c_0) = g(c_0) \) is a c-point of \(X \). If \(f \) is isotopic to \(g \) under an isotopy \(H \) such that \(H(c_0, t) = f(c_0) \) for each \(t \in I \), then \(C_f = C_g \) and either \(s_f = s_g \) or there exists a chain \(\tau_1, \tau_2, \ldots, \tau_n \) of 2-simplexes joining \(s_f \) and \(s_g \) such that \(f(c_0) \) is a vertex of \(\tau_i \) for each \(i \) and \(\tau_i \cap \tau_{i+1} \) is not a face of a simplex of \(C_f \) for any \(i \).

Proof. Let \(H: C \times I \to X \) be an isotopy such that \(H(w, 0) = f(w) \) and \(H(w, 1) = g(w) \) for each \(w \in C \) and \(H(c_0, t) = f(c_0) \) for each \(t \in I \). For each \(t \in I \), let \(h_t: C \to X \) be the imbedding defined by \(h_t(w) = H(w, t) \).

Suppose \(C_f \neq C_g \), and let \(t' = \text{lub} \{ t \mid C_{h_t} = C_f \} \). Suppose \(C_{h_{t'}} = C_f \). Let \(\{ t_i \}_{i=1}^\infty \) be a sequence of points such that \(t_i < t_i' \) for each \(i \), \(t_i > t_{i+1} \) for each \(i \), and \(\lim_{i \to \infty} t_i = t' \). For each \(i \), there exists a 2-simplex \(\eta_i \) of \(C_f \) such that \(\eta_i \neq C_{h_{t_i}} \).

Since \(C_f \) has only a finite number of simplexes, there is a 2-simplex \(\eta \) such that \(\eta_i = \eta \) for an infinite number of \(i \)'s. Let \(V' \) be a neighborhood of \((c_0, t') \) such that \(H(V') \subseteq \text{St}(f(c_0), X) \). There exists a connected neighborhood \(M' \) of \(c_0 \) and a neighborhood \(N' \) of \(t' \) such that \(M' \times N' \subseteq V' \). Let \(c_1 \in M' \cap D \) such that \(H(c_1, t') \in \text{int}(\eta) \). Let \(V \) be any neighborhood of \((c_1, t') \). There exists a neighborhood \(M \) of \(c_1 \) and a connected neighborhood \(N \) of \(t' \) such that

\[
M \times N \subseteq V \cap (M' \times N').
\]

There exists \(i \) such that \(t_i \in N \) and \(\eta_i = \eta \). Since

\[
M' \times \{ t_i \} \subseteq V', H(M' \times \{ t_i \}) \subseteq \text{St}(f(c_0), X).
\]

Therefore, since \(M' \times \{ t_i \} \) is connected, \(c_0 \in M' \), and \(c_1 \in M' \cap D \), \(H(c_1, t_i) \in C_{h_{t_i}} \).

Therefore \(H(V) \notin \text{int}(\eta) \), and hence \(H \) is not continuous. If \(C_{h_{t'}} \neq C_f \), then \(t' > 0 \), and, using essentially the same argument, we can show that \(H \) is not continuous.

Therefore \(C_f = C_g \).

Suppose \(s_f \neq s_g \). For each \(t \in I \), there exists a neighborhood \(V_t \) of \(c_0 \) and a neighborhood \(W_t \) of \(t \) such that \(H(V_t \times W_t) \subseteq \text{St}(f(c_0), X) \). Let \(V_{t_1} \times W_{t_1}, V_{t_2} \times W_{t_2}, \ldots, V_{t_n} \times W_{t_n} \) be a finite subcollection of \(\{ V_t \times W_t \mid t \in I \} \) which covers \(\{ c_0 \} \times I \). Let \(V = \bigcap_{t=1}^n V_{t_i} \). There \(V \) is a neighborhood of \(c_0 \) and \(H(V \times I) \subseteq \text{St}(f(c_0), X) \). Let \(t_H \in r(t_H \neq c_0) \) such that \([c_0, t_H] \subseteq V \), and let \(c_1 \in [c_0, t_H] \cap [c_0, t_f] \cap [c_0, t_3] \) such that \(c_1 \neq c_0 \).

We assert that there exists a neighborhood \(N \) of \(1 \) such that if \(t \in N \), then \(t_H \) can be chosen so that

\[
h_t([c_0, t_H] \cap [c_0, c_1]) \cap \{ \tau \mid \tau \in A_\beta \} - \{ f(c_0) \} \neq \emptyset.
\]

First suppose

\[
g(\partial(C - r \cup \{ f(c_0) \})) \cap \{ \tau \mid \tau \in C_\beta \} = \emptyset.
\]
For each \(x \in \partial (C - r \cup \{ f(c_0) \}) \), there exists a neighborhood \(M_x \) of \(x \) and a neighborhood \(N_x \) of \(1 \) such that \(H(M_x \times N_x) \cap \bigcup \{ \tau \mid \tau \in C_g \} = \emptyset \). Let \(M_x_1 \times N_x_1 \cdot M_x_2 \times N_x_2 , \ldots , M_x_n \times N_x_n \) be a finite subcollection of
\[
\{ M_x \times N_x \mid x \in \partial (C - r \cup \{ f(c_0) \}) \}
\]
which covers \(\partial (C - r \cup \{ f(c_0) \}) \times \{ 1 \} \), and let \(N' = \bigcap_{i=1}^n N_x_i \). Then \(N' \) is a neighborhood of \(1 \), and \(H(\partial (C - r \cup \{ f(c_0) \}) \times N') \cap \bigcup \{ \tau \mid \tau \in C_g \} = \emptyset \). If \(t \in N' \), then each point of \(\bigcup \{ \tau \mid \tau \in C_g \} \) is the image under \(h_t \) of some point of \(C - r \cup \{ f(c_0) \} \). Therefore \(h_t([c_0, c_1]) \cap \bigcup \{ \tau \mid \tau \in C_g \} - \{ f(c_0) \} = \emptyset \) if \(t \in N' \). Thus we may assume that for \(t \in N' \), \([c_0, c_1]\subset [c_0, t_{hi}] \). Let \(B_g = \{ \tau \mid f(c_0) \text{ is a vertex of } \tau \} \). Then \(W = \bigcup \{ \text{int}(\tau) \mid \tau \in B_g \} \) is an open set such that \(g(c_1) \in W \subseteq \bigcup \{ \tau \mid \tau \in A_g \} - \{ f(c_0) \} \). Therefore there exists a neighborhood \(N' \) of \(1 \) such that if \(t \in N' \), then \(h_t(c_1) \in W \). Let \(N = N' \cap N'' \). If \(t \in N \), then
\[
h_t([c_0, c_1]) \cap \{ \tau \mid \tau \in A_g \} - \{ f(c_0) \} \neq \emptyset
\]
because \([c_0, c_1]\subset [c_0, t_{hi}] \) and \(h_t(c_1) \in W \). Now suppose
\[
g(\partial (C - r \cup \{ f(c_0) \})) \cap \bigcup \{ \tau \mid \tau \in C_g \} \neq \emptyset.
\]
Let
\[
e = d[g(\partial (C - r \cup \{ f(c_0) \})) \cap \bigcup \{ \tau \mid \tau \in C_g \}, f(c_0)],
\]
where \(d \) is a metric for \(X \). Then \(\epsilon > 0 \), and by an argument similar to the one above, there exists a neighborhood \(N' \) of \(1 \) such that if \(t \in N' \), then
\[
d[h_t(\partial (C - r \cup \{ f(c_0) \})) \cap \bigcup \{ \tau \mid \tau \in C_g \}, f(c_0)] > \epsilon / 2.
\]
Let \(U' \) be the \(\epsilon / 2 \)-neighborhood of \(f(c_0) \), and let \(U = \text{St}(f(c_0), X) \cap U' \). There exists a neighborhood \(M \) of \(c_0 \) and neighborhood \(N' \) of \(1 \) such that \(H(\text{M} \times N') \subseteq U \). Let \(c' \in r(c' \neq c_0) \) such that \([c_0, c'] \subset M \cap [c_0, c_1]\). If \(t \in N' \cap N'' \), then
\[
h_t([c_0, c']) \cap \{ \tau \mid \tau \in C_g \} = \{ f(c_0) \}.
\]
Thus if \(t \in N' \cap N'' \), we may assume that \([c_0, c'] \subset [c_0, t_{hi}] \). Therefore, by an argument similar to the one above, we can show that there exists a neighborhood \(N \) of \(1 \) such that if \(t \in N \), then \(t_{hi} \) can be chosen so that
\[
h_t([c_0, t_{hi}] \cap [c_0, c_1]) \cap \{ \tau \mid \tau \in A_g \} - \{ f(c_0) \} \neq \emptyset.
\]
Now we return to the proof of the theorem. There exist 2-simplexes \(\tau_1, \tau_2, \ldots , \tau_m \) in \(X \) such that \(H([c_0, c_1] \times I) \cap \tau_i \neq \emptyset \) for each \(i = 1, 2, \ldots , m \), and
\[
H([c_0, c_1] \times I) \subset \bigcup_{i=1}^m \tau_i.
\]
Obviously some subcollection of \(\tau_1, \tau_2, \ldots , \tau_m \) is a chain joining \(s_p \) and \(s_q \). Suppose that for each such subcollection \(\tau_1, \tau_2, \ldots , \tau_n \), \(\tau_i \cap \tau_{i+1} \) is a face of a simplex of
C, for some i = 1, 2, . . . , n − 1. For each t ∈ I, some subcollection of τ₁, τ₂, . . . , τₘ is a chain joining sℏᵢ and sᵢ. Let

$$\Gamma = \{t \mid \text{if } \tau₁, \tau₂, . . . , \tauₙ \text{ is any subcollection of } \tau₁, \tau₂, . . . , \tauₘ \text{ which is a chain joining } sℏᵢ \text{ and } sᵢ, \text{ then } \tauᵢ \cap \tauᵢ₊₁ \text{ is a face of some simplex of } C, \text{ for some } i = 1, 2, . . . , n − 1\},$$

and let t' = glb{t | t ∈ Γ}. Suppose t' = 1. Observe that if ρ, ρ' ∈ Aₜᵢ for some t, and ρ can be joined to sᵢ by a subcollection τ₁, τ₂, . . . , τₙ of τ₁, τ₂, . . . , τₘ so that τᵢ ∩ τᵢ₊₁ is not a face of C, for any i = 1, 2, . . . , n − 1, then ρ' can be joined to sᵢ by such a subcollection of τ₁, τ₂, . . . , τₘ. If

$$h₝([c₀, ℏᵢ] \cap [c₀, c₁]) \cap \bigcup \{τ \mid τ ∈ Aₜᵢ\} - \{f(c₀)\} \neq \emptyset,$$

then Aₜᵢ and Aₜ have a common simplex and hence each simplex in Aₜᵢ can be joined to sᵢ by a subcollection τ₁, τ₂, . . . , τₙ of τ₁, τ₂, . . . , τₘ so that τᵢ ∩ τᵢ₊₁ is not a face of C, for any i = 1, 2, . . . , n − 1. Therefore, if t' = 1,

$$h₝([c₀, ℏᵢ] \cap [c₀, c₁]) \cap \bigcup \{τ \mid τ ∈ Aₜᵢ\} - \{f(c₀)\} = \emptyset$$

for each t < 1. This contradicts the assertion and hence t' ≠ 1. By the assertion, there exists a neighborhood N of t' such that if t ∈ N, then ℏᵢ can be chosen so that

$$h₝([c₀, ℏᵢ] \cap [c₀, c₁]) \cap \bigcup \{τ \mid τ ∈ Aₜᵢ\} - \{f(c₀)\} \neq \emptyset.$$

If t ∈ N, then each simplex in Aₜᵢ can be joined to sₜᵢ by a subcollection τ₁, τ₂, . . . , τₙ of τ₁, τ₂, . . . , τₘ so that τᵢ ∩ τᵢ₊₁ is not a face of C, for any i = 1, 2, . . . , n − 1. Since there exist t ∈ N ∩ Γ, t' ∈ Γ. Therefore t' > 0, and hence there exist t ∈ N such that t < t'. Thus t' ∉ Γ.

The original proof of the following theorem was due to Ross Finney. The author is also indebted to the referee for suggesting a simpler proof.

Theorem 12. Let K be a locally finite polyhedron, and let v be a vertex of K. If h: I × I → K is a homeomorphism such that h(0) = v, then there exists an isotopy F: I × I → K such that F(x, 0) = h(x) for all x ∈ I, F | I × {1} is a homeomorphism of I onto an edge emanating from v, and F(0, t) = v for all t ∈ I.

Proof. If h(I) ∉ St(v, K), let x be the smallest number in I such that h(x) ∉ St(v, K). Then

$$H: I × I → K, (x, t) → h(x − tx + tx),$$

is an isotopy such that H(x, 0) = h(x) for all x ∈ I, H(x, 1) = h(x) ∈ St(v, K) for all x ∈ I, H(1, 0) = v, and H(0, t) = v for all t ∈ I. If h(I) ⊆ St(v, K), then it is easy to see that there is an isotopy H: I × I → K such that H(x, 0) = h(x) for all x ∈ I, H(x, 1) ∈ St(v, K) for all x ∈ I, and H(0, t) = v for all t ∈ I. Thus we may assume without loss of generality that h(I) ⊆ St(v, K) and h(x) ∈ ∂St(v, K) if and only if x = 1. Now define G: I × I → K by

$$G(x, t) = xh(1) + (1 − x)v, \quad t ≤ x ≤ 1,$$

$$= th(x/t) + (1 − t)v, \quad 0 ≤ x < t.$$
Then G is an isotopy such that $G \mid I \times \{0\}$ is a homeomorphism of I onto a line segment in $[St(v, K)]^{-}$ from v to $h(1)$, $G(x, 1) = h(x)$ for all $x \in I$, and $G(0, t) = v$ for all $t \in I$.

Notation. Let x_0 be a c-point of X, let C_p be a collection of 2-simplexes of X, and let s_p be a c-line of X such that x_0, C_p, and s_p satisfy Definition 1. Let τ be a 2-simplex of C_p, let s_l and s_o denote the 1-faces of τ which have x_0 as a vertex, let s_3 denote the 1-face of τ which does not have x_0 as a vertex, and let

$$S = \bigcup \{s : s \text{ is a 1-face of a simplex of } C_p, x_0 \text{ is not a vertex of } s, \text{ and } s \text{ is not a face of } \tau\}.$$

Using the same notation for the simplexes of C as that used in §3, let $p, p' : C \to X$ be the homeomorphisms which satisfy the following properties:

1. p maps r linearly onto s_p,
2. p maps r_j linearly onto s_{j-1} for each $j = 2, 3$,
3. p maps each point of s_i into the point of τ which has the same barycentric coordinates,
4. p maps $r_2 \cup r_3$ linearly onto S,
5. if L is a line segment from c_0 to $r_2 \cup r_3$, then p maps L linearly onto the line segment from x_0 to $p(L \cap (r_2 \cup r_3))$,
6. p' maps r linearly onto s_p,
7. p' maps r_j linearly onto s_{j-1} for each $j = 2, 3$,
8. p' maps r_1 linearly onto S,
9. if L is a line segment from c_0 to r_1, then p' maps L linearly onto the line segment from x_0 to $p'(L \cap r_1)$,
10. p' maps $r_2 \cup r_3$ linearly onto s_3, and
11. if L is a line segment from c_0 to $r_2 \cup r_3$, then p' maps L linearly onto the line segment from x_0 to $p'(L \cap (r_2 \cup r_3))$.

Note. In the remainder of this paper, when we speak of p and p', we will mean homeomorphisms satisfying the above conditions. This means that $C_p = C_{p'}$ and $s_p = s_{p'}$.

Theorem 13. If $f : C \to X$ is an imbedding such that $f(c_0)$ is a c-point of X, $C_f = C_p$, and either $s_l = s_o$ or there exists a chain $\tau_1, \tau_2, \ldots, \tau_n$ of 2-simplexes joining s_l and s_o such that $f(c_0)$ is a vertex of τ_i for each i and $\tau_i \cap \tau_{i+1}$ is not a face of a simplex of C_f for any i, then f is isotopic to either p or p' under an isotopy H such that $H(c_0, t) = f(c_0)$ for each $t \in I$.

Proof. Since f is continuous, there exists a neighborhood V of c_0 such that $f(V) \subseteq \text{St}(f(c_0), X)$. Let $c' \in r$ such that $c' \neq c_0$ and $[c_0, c'] \subseteq V$, and let $c_1 \in [c_0, t_j] \cap [c_0, c']$ such that $c_1 \neq c_0$. There exists $\lambda (0 \leq \lambda < 1)$ such that $c_1 = \lambda c_0 + (1 - \lambda)c$. Let $(w, t) \in C \times I$. If $w \in r$, there exists μ $(0 \leq \mu \leq 1)$ such that $w = \mu c_0 + (1 - \mu)c$. Define $K : C \times I \to X$ by

$$K(w, t) = f(w), \quad \text{if } w \in D,$$

$$= f((\mu + t\lambda - t\lambda\mu)c_0 + (1 - \mu - \lambda t + t\lambda\mu)c), \quad \text{if } w \in r.$$
Then K is an isotopy, $K(w, 0) = f(w)$, and K_1 is an imbedding of C into X such that $K_1(\tau) \subseteq (\mathrm{St}(f(c_0), X) - \bigcup \{\tau \mid \tau \in C_i\}) \cup \{f(c_0)\}$ and $K_1(w) = f(w)$ for all $w \in D$.

There exists a positive number S such that if
\[
D' = \{x \mid x \in E \{\tau \mid \tau \in C_i\} \text{ and } d(f(c_0), x) < S\},
\]
then $D' \subseteq (\mathrm{int}(f(D))) \cup \bigcup \{\tau \mid \tau \in C_i\}$. Then $f^{-1}(D') \subseteq \mathrm{int}(D)$. Let A_1 be the annulus bounded by $f^{-1}(\partial D')$ and ∂D, and let k_1 be a homeomorphism of A_1 onto the annulus $\{z \mid 3 \leq |z| \leq 4\}$ in the plane which sends $f^{-1}(\partial D')$ onto $\{z \mid |z| = 3\}$. Let $D^* = \text{a disk with center at } c_0$ such that $D^* \subseteq \mathrm{int}(f^{-1}(D'))$, and let A_2 be the annulus bounded by ∂D^* and $f^{-1}(\partial D')$. Let k_2 be a homeomorphism of A_2 onto the annulus $\{z \mid 1 \leq |z| \leq 2\}$ in the plane which sends ∂D^* onto $\{z \mid |z| = 1\}$. Define k_3 mapping D^* onto the disk $\{z \mid |z| \leq 1\}$ in the plane as follows: $k_3(c_0)$ is the origin, $k_3(w)$ is $k_3(w)$ if $w \in \partial D^*$, and if L is a line segment from c_0 to ∂D^*, then k_3 maps L linearly onto the line segment from the origin to $k_3(L \cap \partial D^*)$. Then $k_4 : f^{-1}(D') \to E^2$ defined by $k_4(w) = k_3(w)$, if $w \in f^{-1}(D') - \partial D^*$, and $k_4(w) = k_3(w)$, if $w \in \partial D^*$, is a homeomorphism of $f^{-1}(D')$ onto the disk $\{z \mid |z| \leq 2\}$. Define $k_5 : \{z \mid |z| \leq 2\} \to \{z \mid |z| \leq 3\}$ by k_5 of the origin is the origin, $k_5(z) = k_3(k_2^{-1}(z))$, if $|z| = 2$, and if L is a line segment from the origin to $\{z \mid |z| = 2\}$, then k_5 maps L linearly onto the line segment from the origin to the origin $k_5(L \cap \{z \mid |z| = 2\})$. Then $k : D \to \{z \mid |z| \leq 4\}$ defined by $k(z) = k_5(z)$, if $z \in D - f^{-1}(D')$, and $k(z) = k_5(k_4(z)$, if $z \in f^{-1}(D')$, is a homeomorphism which sends ∂D onto $\{z \mid |z| = 4\}$ and $f^{-1}(\partial D')$ onto $\{z \mid |z| = 3\}$ and maps c_0 into the origin. Define $G : \{z \mid |z| \leq 4\} \times I \to \{z \mid |z| \leq 4\}$ by $G(z, t) = \frac{z - tz/4}{w}$. Define $F : D \times I \to X$ by $F(w, t) = f^{-1}G(k(w), t)$. Then F is an isotopy, $F(w, 0) = f(w)$, and $F(w, 1) \in D'$. Since $F(c_0, t) = f(c_0)$ for all $t \in I$, we can extend F to an isotopy $F^* : C \times I \to X$ by defining $F^*(w, t) = K_1(w)$ for all $w \in r$. Then $F^*(w, 0) = K_1(w)$ for all $w \in C$, and F^* is an imbedding of C into X such that $F^*(D) = D'$.

Let $w \in D - \{c_0\}$, and let L_1 be the line segment from c_0 to ∂D which passes through w. Then $F^*(L_1 \cap \partial D) \subseteq \partial D'$. Let L_2 be the line segment from $f(c_0)$ to $\partial(f(c_0) \cup \{\tau \mid \tau \in C_i\})$ which passes through $F^*(L_1 \cap \partial D)$, and let
\[
a = L_2 \cap \partial(f(c_0) \cup \{\tau \mid \tau \in C_i\})
\]
Let e be a metric for C, and let e be the e radius of D. Define $J : C \times I \to X$ by
\[
J(w, t) = K_1(w), \text{ if } w \in r,
\]
$J(w, t) = F^*(w)$ (the point on L_1 whose distance from c_0 is $2e(w, c_0)/(2-t)$),
\[
J(w, t) = \begin{cases} \frac{2e(w, c_0) - 2e + et}{e}a + \frac{(3e - et - 2e(w, c_0))e}{e}F^*(L_1 \cap \partial D), & \text{if } w \in D \text{ and } e(w, c_0) \leq e(2-t)/2, \\
\end{cases}
\]
and
\[
J(w, t) = \begin{cases} \frac{(2e(w, c_0) - 2e + et)e}{e}a + \frac{(3e - et - 2e(w, c_0))e}{e}F^*(L_1 \cap \partial D), & \text{if } w \in D \text{ and } e(w, c_0) \geq e(2-t)/2. \\
\end{cases}
\]
Then J is an isotopy, $J(w, 0) = F^*(w)$, if $w \in D$, and $J_1(D) = \bigcup \{\tau \mid \tau \in C_i\}$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
It is clear that there exists an isotopy $M^*: \partial D \times I \to \partial(\bigcup \{ \tau \mid \tau \in C_j \})$ such that $M^*(w, 0)=J_1(w)$ and M^* is either $p|\partial D$ or $p'|\partial D$. Also it is clear that this isotopy can be extended to an isotopy $M': D \times I \to \bigcup \{ \tau \mid \tau \in C_j \}$ such that $M'_0=J_1$ and $M'(c_0, t)=f(c_0)$. Then we can extend M' to an isotopy

$$M: C \times I \to \bigcup \{ \tau \mid \tau \in C_j \} \cup f([c_0, c_1])$$

by defining $M(w, t)=K_1(w)$ for all $w \in r$. Now by Alexander's Theorem [1], M_1' is isotopic to either $p|D$ or $p'|D$ under an isotopy N' such that $N'(c_0, t)=f(c_0)$. Again N' can be extended to an isotopy $N: C \times I \to \bigcup \{ \tau \mid \tau \in C_j \} \cup f([c_0, c_1])$ by defining $N(w, t)=K_1(w)$ for all $w \in r$.

The desired result now follows immediately from Theorem 12.

Theorem 14. Let $f: C \to X$ be an imbedding such that $f(c_0)$ is a c-point of X. If $F: C \times I \to X$ is an isotopy such that $F(w, 0)=f(w)$ for each $w \in C$ and

$$t' = \text{glb}(t \mid F(c_0, t) \neq f(c_0)),$$

then there exists a neighborhood V of t' such that $F(c_0, t) \in \bigcup \{ \tau \mid \tau \in C_j \}$ whenever $t \in V$.

Proof. Suppose that for each neighborhood R of t', there exists $t \in R$ such that $F(c_0, t) \notin \bigcup \{ \tau \mid \tau \in C_j \}$. Observe that $F(c_0, t')=f(c_0)$. Let V' be a neighborhood of (c_0, t') such that $F(V') \subseteq \text{St}(f(c_0), X)$. There exists a connected neighborhood M' of c_0 and a neighborhood N' of t' such that $M' \times N' \subseteq V'$. Let $c_1 \in M' \cap D$ such that $c_1 \neq c_0$. Then $F(c_1, t') \in \text{int}(\bigcup \{ \tau \mid \tau \in C_j \})$. Let V be any neighborhood of (c_1, t'). There exists a neighborhood M of c_1 and a connected neighborhood N of t' such that $M \times N \subseteq V \cap (M' \times N')$. There exists $t_1 \in N$ such that

$$F(c_0, t_1) \notin \bigcup \{ \tau \mid \tau \in C_j \}.$$

Since

$$M' \times \{t_1\} \subseteq V', F(M' \times \{t_1\}) \subseteq \text{St}(f(c_0), X).$$

Let X' be a subdivision of X such that $F(c_0, t_1)$ is a c-point of X', and let $f_{t_1}=F|C \times \{t_1\}$. Since $M' \times \{t_1\}$ is connected, $c_0 \in M'$, and

$$c_1 \in M' \cap D, F(c_1, t_1) \in \text{int}(\bigcup \{ \tau \mid \tau \in C_{t_1} \}).$$

Therefore $F(V) \subseteq \text{int}(\bigcup \{ \tau \mid \tau \in C_j \})$, and hence F is not continuous.

Definition 4. If $f, g: C \to X$ are imbeddings such that $f(c_0)$ and $g(c_0)$ are c-points of X, then we say that $f(C)$ and $g(C)$ are **combinatorially joined** if there exist a sequence s_1, s_2, \ldots, s_a of 1-simplexes and three sequences $\tau_1, \tau_2, \ldots, \tau_b; \tau'_1, \tau'_2, \ldots, \tau'_a; \tau^*_1, \tau^*_2, \ldots, \tau^*_a$ of 2-simplexes such that:

1. $f(c_0)$ is a vertex of s_1 and $g(c_0)$ is a vertex of s_a,
2. $s_\beta \cap s_{\beta+1}$ is a vertex for each $\beta=1, 2, \ldots, a-1$,
(3) s_β is a face of τ_1 and s_α is a face of τ_β.

(4) τ_1' and τ_1 are simplexes of C and τ_α' and τ_α are simplexes of C_α.

(5) For each i, j, and k, $\tau_i \cap \tau_{i+1}$, $\tau_j \cap \tau_{j+1}$, and $\tau_k \cap \tau_{k+1}$ are ρ-simplexes ($\rho = 1, 2$), and

(6) For each $\beta = 1, 2, \ldots, \alpha$, we may choose $i(\beta)$, $j(\beta)$, and $k(\beta)$ such that:

(a) $j(1) = 1$, $k(1) = 1$, $j(\alpha) = m$, and $k(\alpha) = n$,

(b) For each $\beta = 1, 2, \ldots, \alpha - 1$, $i(\beta + 1) > i(\beta)$, $j(\beta + 1) > j(\beta)$, and $k(\beta + 1) > k(\beta)$,

(c) $\tau_{i(\beta)}$, $\tau_{j(\beta)}$, and $\tau_{k(\beta)}$ are distinct,

(d) $\tau_{i(\beta)} \cap \tau_{j(\beta)} \cap \tau_{k(\beta)} = s_\beta$,

(e) If $\alpha > 1, 2, \ldots, \alpha$, then $\tau_{i(\beta)} \cap \tau_{j(\beta)}$ is a ρ-simplex ($\rho = 1, 2$), then $\tau_{i(\beta)} \cap \tau_{j(\beta)} = \tau_{i(\beta)}$,

(f) If $\alpha > 1, 2, \ldots, \alpha$, then $\tau_{i(\beta)} \cap \tau_{j(\beta)}$ is a ρ-simplex ($\rho = 1, 2$), then $\tau_{i(\beta)} \cap \tau_{j(\beta)} = \tau_{i(\beta)}$,

(g) If $\alpha > 1, 2, \ldots, \alpha$, then $\tau_{i(\beta)} \cap \tau_{j(\beta)}$ is a vertex v, then, for each $\gamma = i(\beta)$, $j(\beta) + 1$, and each $\epsilon = k(\beta)$, $j(\beta) + 1$, and $\tau_{i(\beta)} \cap \tau_{j(\beta)} \cap \tau_{k(\beta)} = \{v\}$,

(h) If $\alpha > 1, 2, \ldots, \alpha$, then $\tau_{i(\beta)} \cap \tau_{j(\beta)}$ is a vertex v, then, for each $\gamma = i(\beta)$, $j(\beta) + 1$, and each $\epsilon = k(\beta)$, $j(\beta) + 1$, and $\tau_{i(\beta)} \cap \tau_{j(\beta)} \cap \tau_{k(\beta)} = \{v\}$,

(i) If $\alpha > 1, 2, \ldots, \alpha$, then $\tau_{i(\beta)} \cap \tau_{j(\beta)}$ is a vertex v, then, for each $\gamma = i(\beta)$, $j(\beta) + 1$, and each $\epsilon = k(\beta)$, $j(\beta) + 1$, and $\tau_{i(\beta)} \cap \tau_{j(\beta)} \cap \tau_{k(\beta)} = \{v\}$,

(j) If $\alpha > 1, 2, \ldots, \alpha$, then $\tau_{i(\beta)} \cap \tau_{j(\beta)}$ is a vertex v, then, for each $\gamma = i(\beta)$, $j(\beta) + 1$, and each $\epsilon = k(\beta)$, $j(\beta) + 1$, and $\tau_{i(\beta)} \cap \tau_{j(\beta)} \cap \tau_{k(\beta)} = \{v\}$,

(k) If $\alpha > 1, 2, \ldots, \alpha$, then, for each $\gamma = i(\beta)$, $j(\beta) + 1$, and each $\epsilon = k(\beta)$, $j(\beta) + 1$, and $\tau_{i(\beta)} \cap \tau_{j(\beta)} \cap \tau_{k(\beta)} = \{v\}$,

(l) If $\alpha < q$, then, for each $i = i(\alpha) + 1, \ldots, q$, $\tau_{i(\beta)} \cap \tau_{j(\beta)} \cap \tau_{k(\beta)} = \{v\}$.

We say that $s_1, s_2, \ldots, s_\alpha$ and $\tau_1, \tau_2, \ldots, \tau_\alpha$ combinatorially join $f(C)$ and $g(C)$.

Theorem 15. Let $f, g: C \to X$ be imbeddings such that $f(c_0)$ and $g(c_0)$ are c-points of X. If f is isotopic to g under an isotopy H such that $H(c_0, t) \neq f(c_0)$ for some $t \in I$, then $f(C)$ and $g(C)$ are combinatorially joined.

Proof. We may choose 1-simplexes $s_1, s_2, \ldots, s_\alpha$ in

$\{s | s$ is a 1-simplex and $H((c_0 \times I) \cap \text{int}(s)) \neq \emptyset\}$,

2-simplexes $\tau_1, \tau_2, \ldots, \tau_q$ in

$\{\tau | \tau$ is a 2-simplex and for some $t \in I$ arbitrarily small neighborhoods of $H(c_0, t)$ intersect $H((r-\{c_0\} \times \{t\}) \cap \tau)\}$,

and 2-simplexes $\tau_{i1}, \tau_{i2}, \ldots, \tau_{i\alpha}$; $\tau_{j1}, \tau_{j2}, \ldots, \tau_{j\alpha}$ in

$\{\tau | \tau$ is a 2-simplex and for some $t \in I$ arbitrarily small neighborhoods of $H(c_0, t)$ intersect $H((D-\{c_0\}) \times \{t\}) \cap \tau)\}$

so that they may be ordered in such a way as to satisfy Definition 4.

Theorem 16. The imbeddings p and p' are not isotopic.

Proof. Suppose $F: C \times I \to X$ is an isotopy between p and p'. If $F(c_0, t) = x_0$ for all $t \in I$, then $F | \partial D \times I$ is an isotopy in $X - \{x_0\}$ between $p | \partial D$ and $p' | \partial D$, and therefore X is not contractible. Hence there exists $t \in I$ such that $F(c_0, t) \neq x_0$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Now there exists a sequence \(s_1, s_2, \ldots, s_a \) of 1-simplexes and three sequences
\[\tau_1, \tau_2, \ldots, \tau_q; \tau'_1, \tau'_2, \ldots, \tau'_m; \tau''_1, \tau''_2, \ldots, \tau''_n \]
of 2-simplexes which combinatorially join \(p(C) \) and \(p'(C) \) and which have the following properties:

1. \(\text{int}(s_\beta) \cap F((c_0) \times I) \neq \emptyset \) for each \(\beta = 1, 2, \ldots, a, \)
2. for each \(i, j \), there exists \(t \in I \) such that arbitrarily small neighborhoods of \(F(c_0, t) \cap \tau_i \)
3. for each \(j \), there exists \(t \in I \) such that arbitrarily small neighborhoods of \(F(c_0, t) \cap \tau'_j \)
4. for each \(k \), there exists \(t \in I \) such that arbitrarily small neighborhoods of \(F(c_0, t) \cap \tau''_k \).

We will assume throughout the remainder of this proof that \(F \mid C \times \{0\} = p \) and show that \(F \mid C \times \{1\} \neq p' \). First suppose that \(p(c_0) \) is not a vertex of \(s_\beta \) for any \(\beta = 2, 3, \ldots, a-1 \). If \(s_1, s_2, \ldots, s_a \) does not contain a simple closed curve, then it is easy to see that \(F \mid C \times \{1\} \) is “essentially” \(p \) rather than \(p' \) because the isotopy has not “flipped” the disk \(\cup \{ \tau \mid \tau \in C_p \} \). If \(s_1, s_2, \ldots, s_a \) contains a simple closed curve, then \(F \mid C \times \{1\} \) is “essentially” either \(p \) or a rotation of \(p \) rather than \(p' \) because if the isotopy “flips” the disk \(\cup \{ \tau \mid \tau \in C_p \} \) then \(s_p = s_p' \) cannot be a face of \(\tau_q \). Now if \(p(c_0) \) is a vertex of \(s_\beta \) for some \(\beta = 2, 3, \ldots, a-1 \), then, in order to determine \(F \mid C \times \{1\} \), we examine some finite combination of the possibilities listed above. But it is obvious that this finite combination will “essentially” yield either \(p \) or a rotation of \(p \) rather than \(p' \). Therefore \(p \) is not isotopic to \(p' \).

Theorem 17. Let \(f, g: C \to X \) be imbeddings such that \(f(c_0) \) and \(g(c_0) \) are c-points of \(X \). If \(C_f = C_p \), if either \(s_1 = s_p \) or there exists a chain \(\tau_1, \tau_2, \ldots, \tau_n \) of 2-simplexes joining \(s_f \) and \(s_p \) such that \(f(c_0) \) is a vertex of \(\tau_i \) for each \(i \) and \(\tau_i \cap \tau_{i+1} \) is not a face of a simplex of \(C_f \) for any \(i \), and if \(f(C) \) and \(g(C) \) are combinatorially joined, then \(g \) is isotopic to either \(p \) or \(p' \).

Proof. By Theorem 13, there is a \(p_g \) such that \(g \) is isotopic to either \(p_g \) or \(p'_g \). It is clear that \(p(C) \) and \(p_g(C) \) are combinatorially joined. Therefore \(p_g \) is isotopic to either \(p \) or \(p' \), and hence \(g \) is isotopic to either \(p \) or \(p' \).

Theorem 18. If \(f: C \to X \) is an imbedding and \(f(c_0) \) is an interior point of a 1-simplex \(s \) of \(X \), then there exists a unique collection \(D_f \) consisting of two 2-simplexes of \(X \) which contain \(s \) as a face such that (1) \(f(C-r) \) intersects the interior of every simplex in \(D_f \) and (2) there exists a neighborhood \(U \) of \(f(c_0) \) such that if \(\tau \) is a simplex which is not a face of a simplex of \(D_f \), then \(f(C-r) \cap \text{int}(\tau) \cap U = \emptyset \). Moreover there is a point \(t_j \) in \(r \) (\(t_j \neq c_0 \)) and a 2-simplex \(\tau \in X-C_f \) such that
\[f([c_0, t_j]-(c_0)) \subset \text{int}(\tau). \]

The proof is essentially the same as the proof of Theorem 10 and hence it is omitted.
Notation. If \(\tau \) is the 2-simplex such that \(f([c_0, t_1]-(c_0)) \subseteq \text{int}(\tau) \), let \(s_\tau \) denote the line segment in \(\tau \) from \(f(c_0) \) to the vertex of \(\tau \) which is not a vertex of \(s \).

Note. Since \(f(c_0) \) is a c-point of a subdivision of \(X \), we can obviously define imbeddings \(p \) and \(p' \) just as before so that \(p(c_0) = p'(c_0) = f(c_0) \) and show that \(f \) is isotopic to either \(p \) or \(p' \) but not both.

Theorem 19. Suppose \(f, g : C \to X \) are imbeddings such that \(f(c_0) \) and \(g(c_0) \) are interior points of 1-simplexes \(s_1 \) and \(s_2 \) respectively (\(s_1 \neq s_2 \)). Then \(f \) is isotopic to \(g \) if and only if there exist imbeddings \(h, k : C \to X \) such that \(h(c_0) \) and \(k(c_0) \) are c-points, \(f \) is isotopic to \(h \), \(g \) is isotopic to \(k \), and \(h \) is isotopic to \(k \).

Proof. Suppose \(F : C \times I \to X \) is an isotopy such that \(F(w, 0) = f(w) \) and \(F(w, 1) = g(w) \) for all \(w \in C \). Suppose that \(F(c_0, t) \) is not a c-point of \(X \) for any \(t \in I \). If \(t_1 = \text{lub}\{t \mid F(c_0, t) \in s_1\} \), then \(F \) is not continuous at \((c_0, t_1)\).

If the condition is satisfied, then \(f \) is isotopic to \(g \) because isotopy is an equivalence relation.

Theorem 20. Suppose \(f : C \to X \) is an imbedding such that \(f(c_0) \) is an interior point of a 1-simplex \(s \) of \(X \). Then there exists an imbedding \(g : C \to X \) such that \(g(c_0) \) is a c-point of \(X \) and \(f \) is isotopic to \(g \) if and only if there exists a vertex \(v \) of \(s \), 2-simplexes \(\tau_1, \tau_2, \ldots, \tau_n \) of \(X \), and a 1-simplex \(s_1 \) of \(X \) such that:

1. \(v, \tau_1, \tau_2, \ldots, \tau_n, \) and \(s_1 \) satisfy Definition 1,
2. \(\bigcup \{\tau \mid \tau \in D_1\} \subseteq \bigcup_{i=1}^{n} \tau_i \), and
3. either \(s_1 \) and \(s \) are in the same 2-simplex or there exists a chain \(\tau_1, \tau_2, \ldots, \tau_q \) of 2-simplexes such that \(s_1 \subseteq \tau_1, s_j \subseteq \tau_j, v \) is a vertex of \(\tau_j \) for each \(j \), and \(\tau_j \cap \tau_{j+1} \) is a 1-simplex which is not a face of \(\tau_i \) for any \(i \).

Proof. Suppose there exists an imbedding \(g : C \to X \) such that \(g(c_0) \) is a c-point of \(X \) and \(f \) is isotopic to \(g \). Let \(F : C \times I \to X \) be an isotopy such that \(F(w, 0) = f(w) \) and \(F(w, 1) = g(w) \) for all \(w \in C \). Let \(t_1 = \text{glb}\{t \mid F(c_0, t) \in \text{int}(\tau)\} \). Then \(F(c_0, t_1) \) is a vertex \(v \) of \(s \), and it is clear that the imbedding \(f_{t_1} : C \to X \) defined by \(f_{t_1}(w) = F(w, t_1) \) gives us a collection of simplexes satisfying the condition.

Suppose the condition is satisfied. By the note preceding Theorem 19, there is a \(p \) such that \(f \) is isotopic if either \(p \) or \(p' \). It is clear that \(p \), and hence \(p' \), is isotopic to an imbedding \(g : C \to X \) such that \(g(c_0) \) is a c-point of \(X \).

Theorem 21. Let \(s \) be a 1-simplex of \(X \) which does not have a c-point as vertex but which is a face of at least three 2-simplexes. If \(n \) is the number of 2-simplexes which have \(s \) as a face, then \(\{f : C \to X \mid f \text{ is an imbedding and } f(c_0) \text{ is an interior point of } s\} \) consists of \(6C(n, 3) \) isotopy classes.

Proof. It is clear that if either \(D_f \neq D_g \) or \(f([c_0, t_1]) \) and \(g([c_0, t_1]) \) are in different simplexes, then \(f \) is not isotopic to \(g \). Thus the theorem follows since there exists \(p \) such that if \(D_f = D_p \) and \(f([c_0, t_1]) \) and \(p(r) \) are in the same simplex, then \(f \) is isotopic to either \(p \) or \(p' \) but not both.
Summary. Now it follows that in order to compute the number of isotopy classes of imbeddings of C in X, it is sufficient to consider only the c-points and the 1-simplexes which do not have a c-point as vertex but which are faces of at least three 2-simplexes. Let x_1, x_2, \ldots, x_m denote the c-points of X, and let s_1, s_2, \ldots, s_n denote the 1-simplexes which do not have a c-point as vertex but which are faces of at least three 2-simplexes. For each $i = 1, 2, \ldots, m$, let $C_{i1}, C_{i2}, \ldots, C_{iq_i}$ be the collections of 2-simplexes having x_i as a vertex and satisfying Definition 1. Suppose $1 \leq i \leq m$ and $1 \leq k \leq q_i$. For each 2-simplex τ such that x_i is a vertex of τ and the 1-faces of τ which have x_i as a vertex are faces of simplexes of C_{ik}, choose a line segment in τ from x_i to the barycenter of the 1-face of τ opposite x_i, and let $s_{ik1}, s_{ik2}, \ldots, s_{ikq_{ik}}$ denote this collection of line segments together with all 1-simplexes having x_i as a vertex which are not faces of simplexes of C_{ik}. Corresponding to (C_{11}, s_{111}), there are 2 isotopy classes of imbeddings of C in X. Corresponding to (C_{11}, s_{112}), there are 2 isotopy classes of imbeddings of C in X. We examine these to see if either is one of the 2 classes previously obtained. We will either get 2 new classes or no new classes. We continue this process. For each (C_{ik}, s_{ik1}), $i = 1, 2, \ldots, m$; $k = 1, 2, \ldots, q_i$; $\beta = 1, 2, \ldots, \alpha_{ik}$, there are 2 isotopy classes of imbeddings of C in X. They are either both new or neither is new. Let γ_i be the number of distinct isotopy classes of imbeddings of C in X obtained from (C_{ik}, s_{ik1}), $k = 1, 2, \ldots, q_i$; $\beta = 1, 2, \ldots, \alpha_{ik}$. For each $i = 2, 3, \ldots, m$, let γ_i be the number of distinct isotopy classes of imbeddings of C in X obtained from (C_{ik}, s_{ik1}), $k = 1, 2, \ldots, q_i$; $\beta = 1, 2, \ldots, \alpha_{ik}$, which are different from those obtained from (C_{ak}, s_{ak1}), $a = 1, 2, \ldots, i-1$; $k = 1, 2, \ldots, q_a$; $\beta = 1, 2, \ldots, \alpha_{ak}$. For each $j = 1, 2, \ldots, n$, let n_j be the number of 2-simplexes which have s_j as a face. Then the number of isotopy classes of imbeddings of C in X is

$$\sum_{i=1}^{m} \gamma_i + 6 \sum_{j=1}^{n} C(n_j, 3).$$

Bibliography