Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Potential theoretic analysis of a certain integral equation


Author: Gunnar A. Brosamler
Journal: Trans. Amer. Math. Soc. 129 (1967), 218-248
MSC: Primary 60.62; Secondary 31.00
DOI: https://doi.org/10.1090/S0002-9947-1967-0219143-6
MathSciNet review: 0219143
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] M. Brelot, Eléments de la théorie classique du potentiel, Les cours de Sorbonne, Paris, 1959. MR 0106366 (21:5099)
  • [2] -, Introduction axiomatique de l'effilement, Ann. Mat. Pure Appl. 57 (1962), 77-96.
  • [3] M. Brelot and J. L. Doob, Limites angulaires et limites fines, Ann. Inst. Fourier (Grenoble) 13 (1963), 395-415. MR 0196107 (33:4299)
  • [4] J. L. Doob, Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77 (1954), 86-121. MR 0064347 (16:269a)
  • [5] -, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France 85 (1957), 431-458. MR 0109961 (22:844)
  • [6] -, Discrete potential theory and boundaries, J. Math. Mech. 8 (1959), 433-458. MR 0107098 (21:5825)
  • [7] -, A non-probabilistic proof of the relative Fatou theorem, Ann. Inst. Fourier (Grenoble) 9 (1959), 293-300. MR 0117454 (22:8233)
  • [8] J. L. Doob, J. L. Snell and R. E. Williamson, Applications of boundary theory to sums of independent random variables, Contributions to Probability and Statistics, Stanford Univ. Press, Stanford, Calif., 1960, pp. 182-197. MR 0120667 (22:11416)
  • [9] E. B. Dynkin, Markov processes, Springer, Berlin, 1965.
  • [10] E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc. 80 (1955), 470-501. MR 0076206 (17:863g)
  • [11] G. A. Hunt, Markov processes and potentials. I, II, III, Illinois J. Math. 1 (1957), 44-93; ibid. 316-369; 2 (1958), 151-213.
  • [12] M. Loève, Probability theory, Van Nostrand, New York, 1955.
  • [13] R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137-172. MR 0003919 (2:292h)
  • [14] L. Naim, Sur la rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier (Grenoble) 7 (1957), 183-281. MR 0100174 (20:6608)
  • [15] G. Plackzek, On the theory of slowing down of neutrons in heavy substances, Phys. Rev. 69 (1946), 423-438. MR 0016527 (8:30a)
  • [16] M. L. Slater and H. S. Wilf, A class of linear differential-difference equations, Pacific J. Math. 10 (1960), 1419-1427. MR 0126032 (23:A3329)
  • [17] F. Spitzer, Principles of random walk, Van Nostrand, Princeton, N. J., 1964. MR 0171290 (30:1521)
  • [18] E. Tolsted, Non-tangential limits of subharmonic functions, Proc. London Math. Soc. 7 (1957), 321-333. MR 0094597 (20:1110)
  • [19] T. Watanabe, A probabilistic method in Hausdorff moment problem and Laplace-Stieltjes transform, J. Math. Soc. Japan 12 (1960), 192-206. MR 0120683 (22:11432)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60.62, 31.00

Retrieve articles in all journals with MSC: 60.62, 31.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1967-0219143-6
Article copyright: © Copyright 1967 American Mathematical Society

American Mathematical Society