Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Representation theory of central topological groups


Authors: Siegfried Grosser and Martin Moskowitz
Journal: Trans. Amer. Math. Soc. 129 (1967), 361-390
MSC: Primary 22.60
DOI: https://doi.org/10.1090/S0002-9947-1967-0229753-8
MathSciNet review: 0229753
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] P. Cartier, Séminaire Sophus Lie, Ecole Norm. Sup. Paris, 1954/55-1955/56.
  • [2] A. H. Clifford, Representations induced on an invariant subgroup, Ann. of Math. 38 (1937), 533-550. MR 1503352
  • [3] C. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962. MR 0144979 (26:2519)
  • [4] R. Godement, Analyse harmonique dans les groupes centraux. I. Fonctions centrales et caractères, C. R. Acad. Sci. Paris 225 (1947), 19-21. MR 0021000 (9:8a)
  • [5] -, Review of: F. I. Mautner, Infinite-dimensional representations of certain groups, Math. Rev. 12 (1951), 588.
  • [6] -, Mémoire sur la théorie des caractères dans les groupes localement compacts unimodulaires, J. Math. Pures Appl. 30 (1951), 1-110. MR 0041857 (13:12a)
  • [7] S. Grosser and M. Moskowitz, On central topological groups, Trans. Amer. Math. Soc. 127 (1967), 317-340. MR 0209394 (35:292)
  • [8] G. Hochschild, The structure of Lie groups, Holden-Day, San Francisco, Calif., 1965. MR 0207883 (34:7696)
  • [9] I. M. Isaacs and D. S. Passman, Groups with representations of bounded degree, Canad. J. Math. 16 (1964), 299-309. MR 0167539 (29:4811)
  • [10] I. Kaplansky, Groups with representations of bounded degree, Canad. J. Math. 1 (1949), 105-112. MR 0028317 (10:428f)
  • [11] L. Loomis, Abstract harmonic analysis, Van Nostrand, Princeton, N. J., 1953. MR 0054173 (14:883c)
  • [12] F. I. Mautner, Infinite-dimensional representations of certain groups, Proc. Amer. Math. Soc. 1 (1949), 582-584. MR 0039728 (12:588c)
  • [13] S. Murakami, Remarks on the structure of maximally almost periodic groups, Osaka Math. J. 2 (1950), 119-129. MR 0041860 (13:12d)
  • [14] L. Nachbin, On the finite-dimensionality of every irreducible unitary representation of a compact group, Proc. Amer. Math. Soc. 12 (1961), 11-12. MR 0123197 (23:A526)
  • [15] M. A. Naimark, Normed rings, Noordhoff, Groningen, 1959. MR 0355601 (50:8075)
  • [16] L. Pontrjagin, Topological groups, Princeton Univ. Press, Princeton, N. J., 1939.
  • [17] I. Segal, The group algebra of a locally compact group, Trans. Amer. Math. Soc. 61 (1947), 69-105. MR 0019617 (8:438c)
  • [18] S. Takahashi, A duality theorem for representable locally compact groups with compact commutator subgroup, Tôhoku Math. J. (2) 4 (1952), 115-121. MR 0053947 (14:846a)
  • [19] E. Thoma, Math. Ann. 153 (1964), 111-138. MR 0160118 (28:3332)
  • [20] B. L. van der Waerden, Modern algebra, Vol. 2, Ungar, New York, 1953.
  • [21] A. Weil, L'intégration dans les groupes topologiques et ses applications, Hermann, Paris, 1953.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22.60

Retrieve articles in all journals with MSC: 22.60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1967-0229753-8
Article copyright: © Copyright 1967 American Mathematical Society

American Mathematical Society