Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

On a necessary condition for the validity of the Riemann hypothesis for functions that generalize the Riemann zeta function


Author: Ronald Alter
Journal: Trans. Amer. Math. Soc. 130 (1968), 55-74
MSC: Primary 10.41; Secondary 30.00
MathSciNet review: 0218312
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Lars V. Ahlfors, Complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable; International Series in Pure and Applied Mathematics. MR 510197 (80c:30001)
  • [2] Raymond Ayoub, An introduction to the analytic theory of numbers, Mathematical Surveys, No. 10, American Mathematical Society, Providence, R.I., 1963. MR 0160743 (28 #3954)
  • [3] P. T. Bateman and E. Grosswald, On Epstein’s zeta function, Acta Arith. 9 (1964), 365–373. MR 0179141 (31 #3392)
  • [4] Ralph Philip Boas Jr., Entire functions, Academic Press Inc., New York, 1954. MR 0068627 (16,914f)
  • [5] E. Grosswald, Generalization of a formula of Hayman and its application to the study of Riemann’s zeta function, Illinois J. Math. 10 (1966), 9–23. MR 0186797 (32 #4252)
  • [6] J. Grommer, Ganze transzendente Funktionen mit lauter reellen Nullstellen, J. Reine Angew. Math. 144 (1914), 114-165.
  • [7] W. K. Hayman, A generalisation of Stirling’s formula, J. Reine Angew. Math. 196 (1956), 67–95. MR 0080749 (18,293f)
  • [8] L. Mordell, The zeta functions arising from quadratic forms and their functional equations, Quart. J. Math. Oxford Ser. 1 (1930), 77-101.
  • [9] G. Pólya, Über die Algebraisch-Funktionen theoretischen von J. L. W. V. Jensen, Mat.-Fys. Medd. Danske Vid. Selsk. 7 (1927), 1-33; p. 16.
  • [10] K. Pracher, Primzahlverteilung, Springer-Verlag, Berlin, 1927.
  • [11] S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159-184. (Collected Papers No. 22.)
  • [12] J. R. Wilton, A Note on Ramanujan's arithmetical function $ \tau (n)$, Proc. Cambridge Philos. Soc. 25 (1929), 121-129.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 10.41, 30.00

Retrieve articles in all journals with MSC: 10.41, 30.00


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1968-0218312-X
PII: S 0002-9947(1968)0218312-X
Article copyright: © Copyright 1968 American Mathematical Society