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Introduction. This paper presents a generalization to « dimensions of some

results which Oka [8] obtained in the space of 2 complex variables. The more

modern (and slightly more general) terminology of divisors replaces Oka's "surfaces

caractéristiques". Let G be a complex manifold with structure sheaf D. For zeG,

let Ds be the stalk of D over z and ro2 be the maximal ideal in £>5. If/is a holo-

morphic function on the open subset U of G and z g U, we define

v,(z) = sup{/|/2Gro0 S oo,

where f is the germ of/at z. A function v, defined on G, is said to be a nonnegative

divisor iff each ae G possesses an open connected neighborhood U on which

there is a holomorphic function/^O with vf=v\U. The volume VV(U) of a divisor

v in an open set U is defined in §4. The principal result of this paper is the estimate

on volumes (9.1) which is prestated below:

Lemma. Let B(r) denote the open ball of radius r in Cn_1, and let D(r) denote the

open disk of radius r in C. Let 0<Ro<Rx<R,0<R"<R'x< R', and define

Q = B(R) x D(R'),       ¿lx = B(RX) x D(R'X),

T = Ti(T?0) x D(R') UB(R)x (D(R')-[D(R")]~).

Then there exists a constant C=C(n; R0, Rx, R; R",R'X,R') such that VV(QX)

S C- Vv(T)for every nonnegative divisor v on Q.

In 1962, Oka [8] furnished a proof for the case « = 2. His proof depends on the

construction of a principal function to a given divisor, and this construction does

not generalize to higher dimensions. Recently O. Fujita [4], using polycylinders

instead of balls, has obtained a result which is, for practical purposes, equivalent

to the above lemma. Fujita proceeds by induction on «, starting with [8] for the

case « = 2; only the induction step from «=2 to n = 3 is actually carried out. Since

[8] is rather difficult to read, a proof independent of it (such as the one in this

paper) seems to be worthwhile.

We prove the lemma by applying the elementary wiggling methods of §8 to an

apparently weaker lemma (7.1). The material appearing before §7 is entirely

devoted to the proof of 7.1. In §10 we verify a folk theorem which enables us to

obtain the applications in §11 and §12:

Application 1. Let 9î=K}AeA be a family of nonnegative divisors on the Stein
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manifold G, and let A ={aÁ}neA be a family of nonnegative real numbers. Then the

set D of points of the first kind (with respect to Sí and A) is a Stein manifold.

Application 2. Let 9Î be a family of nonnegative divisors on the Stein manifold

G. Then the normality domain of 9Î is a Stein manifold.

Application 1 was proved first by Oka [8] in the case of 2 variables and recently

by O. Fujita [4] in the general case. In 1934, Oka [7] indicated Application 2 for

the case of 2 variables; O. Fujita [3] has given a complete direct proof; we obtain

Application 2 as an immediate corollary of Application 1 and the Montel theorem

ofStoll [13].

This paper is essentially the author's doctoral dissertation, written during the

tenure of a National Science Foundation graduate fellowship at the University of

Notre Dame. The author wishes to take this opportunity to thank his thesis director,

Professor Wilhelm Stoll, for his valued assistance and advice.

1. Fubini's theorems. By a manifold we mean a pure dimensional manifold

having a countable base. First we assemble a few well-known facts about differen-

tial forms, beginning with the trivial

Proposition 1.1. Let M and N be manifolds of class Cx, and let v. M -^ N be a

map of class C1. Let x be a differential form of degree k on N. Suppose that do has

rank s<k at x e M. Then o*(x)(x) = 0.

A differential form of degree m on a manifold of dimension m is called a density.

The real densities on an oriented manifold are partially ordered in the natural way.

We say that the density </> is nonnegative iff </> ^ 0. For our purposes, a convenient

form of Fubini's theorem is

Proposition 1.2. Let M and N be oriented manifolds of class Cx. Let </> and </>

be nonnegative measurable densities on M and N respectively. Let nx: M x N -*- M

and tt2: MxN—*■ Nbe the projections. Then ■**(</>) A n* (t/j) is a nonnegative measur-

able density on MxN, and for each nonnegative measurable function fon MxN,

f     M(4>) a TTÍí» = f   (f /(-,j#W
JmxN JyeN\jM I

Proofs of Fubini's theorem have been published by Chevalley [2, pp. 165-167]

and Stoll [10, Satz 7, pp. 131-134]. In the same vein, we require [2, pp. 164-165],

[10, Satz 6, pp. 128-130]:

Proposition 1.3. 7er M and N be oriented manifolds of class Cx and dimension m.

Let a: M-> Nbe a local diffeomorphism of class C1. Let x be a nonnegative measur-

able density on N, and let f be a nonnegative measurable function on M. Then

f f\°*(x)\ = f      2   f(x)x(y)-
JM JyeN xea~1(y)
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We appeal to the famous theorem of Sard [9] in modifying 1.3 to obtain a more

usable

Proposition 1.4. 7er M and A be oriented manifolds of class C° and dimension

m. Let a: M -»■ A be a map of class C°. Let y be a nonnegative measurable density

on N, and let f be a nonnegative measurable function on M. Then

f T>*(x)l = f      2   Ax)xiy)-
Jm JyeN xeo~l(y)

Proof. Define M0={x\ xe M, da has rank m at x}. Then M0 is open and

T = a\M0: M0-> N is a local diffeomorphism. According to 1.1, if xeM—M0,

then o*(x)(x)=0; hence

Í f\o*(x)\ =   f    f\o*(x)\.
Jm Jm0

By 1.3,

Í f\°*(x)\ - f      2  f(x)x(y)-
Jm0 JyeN a6i-1(ï)

By Sard's theorem,

N' = {y \ y e N, y is a critical value of <r}

= {y\yeN,T-\y)*o-\y)}

has measure zero in A. Therefore

f      2   f(x)x(y) = f      2   Ax)x(y), Q.e.d.
JyeN XEZ- i(j,) JyeN xecr-'-Cy)

2. The fibered divisor. In the following, C denotes the field of complex numbers ;

R, the reals; N, the natural numbers; Ao=Au{0}. We adopt the convention

O.co = oo-0 = 0.

Let G be a complex manifold with structure sheaf ¡D. For zeG, let £>z be the

stalk of O over z and ro2 be the maximal ideal in Oz. If/is a holomorphic function

on the open subset U of G and z g £/, we define

vf(z) = sup {j | j e N0,f e ro2} g N0 vj {co},

where/2 is the germ off at z. A function v. G->- N0 is said to be a nonnegative

divisor iff each aeG possesses an open neighborhood U on which there is a

holomorphic function/with vf = v\U. The set

m(v) = {z\zeG, v(z) > 0}

is called the support of v; it is empty or an analytic set of pure codimension 1. Let

?ft(M(v)) denote the set of regular (simple) points of 5Dc(v). The function v is constant

on each connectivity component of ÎR(3)l(v)).
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Let G and 77 be complex manifolds, and let a: G -> 77 be a holomorphic map.

Let v be a nonnegative divisor on 77. Let V be an open connected subset of 77 on

which there is a holomorphic function/with vf = v\V. Define

a*(v)(z) = vf.a(z)       for z £ cc~x(V).

The value of a*(v)(z) does not depend on the choice of V and /, so that a*(v) : G

-> N0 u {oo} is well defined. If a(V)<^3R(v) for every nonempty open subset V of

G, then a*(v) is a nonnegative divisor on G, called the induced divisor.

Let G and 77 be complex manifolds of dimensions m and « respectively, and let

p: G—>- // be a holomorphic map. Suppose that dp has complex rank « at each

point of G. (This implies that n^m.) Then, for each z e 77, Lz = p~x(z) is an

(«j—«)-dimensional smooth complex submanifold of G. Let iz:Lz^-G be the

inclusion. If y is a nonnegative divisor on G, the fibered divisor

Vo:G^N0\J{co}

is defined by vD(w) = i*{w)(v)(w), i.e., it is the induced divisor on each fiber of p.

Lemma 2.1. Let G and 77 be complex manifolds of dimensions « and « — 1 respec-

tively, and let p: G -> 77 be a holomorphic map. Suppose that dp has complex rank

n—lat each point ofG. Let vbea nonnegative divisor on G, and let xbea density on 77

Define M= 3f{(9JÎ(v)), and let t: M -*■ G be the inclusion. Then

(1) v(a) = vp(a)for each ae M such that d(p ° t) has complex rank «—1 at a;

(2) v(p o ¿)*(x) = v„(p ° i)*(x) on M.

Proof. Our convention that co-0=0, applied to 1.1, shows that it will suffice

to prove (1). Since (1) is a local statement, we may assume that

(a) G is an open connected neighborhood of a=0 in C;

(b) H is an open connected neighborhood of 0 in Cn'x;

(c) p(wx,..., wn) = (wx,..., wn_x) for (wx, ...,wn)eG;

(d) p(G) = H,m(v) = M.

Since d(p o t) has complex rank « — 1 at a, we may even assume that

(e) p o t: M -» H is biholomorphic.

Let j=v(a). According to (b), 77 is connected; therefore M is connected and

"(w) = J        f°r w e M,

= 0       forwEG-Af.

Let y: H -)■ M be the inverse of p o t. Then

y(zx,..., zn_0 = (zx,..., zn_x, h(zx,..., zn_j)),

where « is a holomorphic function on 77 with «(0,..., 0) = 0. Define g: G ->■ C by

g(wx, ...,wn) = wn-h(wx,..., wn.x).

Then M={w \ we G,g(w) = 0}. If c = (cx,..., cn)e M, then

0 = g(c) = cn-h(cx,...,cn.x),
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and in a neighborhood of c,

g(wx, ...,wn) = (wn-cn) + (h(cx,..., cn.x)-h(wx,..., wn_x));

hence vg(c) = 1. Therefore

vg(w) =1       for w g M,

= 0       for we G-M,

i.e., v=vgi. Define

70 - P-\0) = {(0, ...,0,wn)\(0,...,0, wn) e G},

and let i0: 70 -*■ G be the inclusion. Then vp(a) = i*(v)(0) = i*(vgi)(0), and

(g1 o t0)(0,..., 0, wn) = g<(0, ...,0,wn) = wl

Hence Vo(a) = l*(vgl)(0)=j=v(a),   Q.E.D.

If M is a fc-dimensional complex submanifold of the complex manifold G,/is a

function defined on M, y is a differential form of degree 2k on G, and i: M->G

is the inclusion, we define

f fx = f /'•(*),
Jm Jm

provided this integral exists.

Proposition 2.2. Let G and H be complex manifolds of dimensions n and n — 1

respectively, and let p: G ->■ T7 be a holomorphic map. Suppose that dp has complex

rank n — 1 at each point of G. Let v be a nonnegative divisor on G, and let f be a

measurable function defined on M= 9t(5nl(i')). Let x be a nonnegative measurable

density on H. Then

f yfp*(x) = i      2   vMA*)x(z),
Jm JzeH u>£0-i(s)

provided the left integral exists.

Proof. Without loss of generality we may assume that /à 0. Let t : M -> G be

the inclusion. By 2.1,

Í vfp*(x) - f yf(p ° 0*(x) = f *pfip " 0*(x).
Jm Jm Jm

Since x is nonnegative and r=p° vis holomorphic, r*(y) is nonnegative. Hence,

according to 1.4,

f »pÄP ° 0*(x) = f ^/|r*0c)|= f       2    ".M/WxC*)-
JM Jm JzeH mej-i(2)

Since p(30î(v)-Af) has measure zero in TT and ^(^=0 if w $ Tl(v), we have

Í    2 »Ám»W) = Í    2 vavvmxíz),     Q.E.D.
JzeH mei-i(2) JzeH wep-ilz)
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By using some results of Stoll [12, Hilfssatz 6.3 and Hilfssatz 6.4, pp. 396-397],

2.2 can be proved without Sard's theorem.

3. Differential forms in a unitary space. If G is a complex manifold and </> is

a differential form of class C1 on G, the exterior derivative d</> is defined. We have

d=8 + 8, where 8 and 8 are bihomogeneous operators of bidegrees (1, 0) and (0, 1)

respectively. Define dL = i(8 — 8).

A unitary space is a complex vector space on which a positive definite Hermitian

form (inner product) is defined. In the following, all unitary spaces are assumed

finite dimensional, and Cn is considered as a unitary space under the ordinary

(complex) inner product.

Let Z be a A>dimensional unitary space with inner product ( | ). If zeZ, the

length of z is </>(z) = \z\ =(z\z)112- On Z we define the differential forms

(dz\z) = 8(z\z),       (z\dz) = 8(z\z),

(dz\dz) = 88(z\z) = -d(dz\z) = d(z\dz),

v(z) = Wz\dz) = ii88(z\z),

vQ = (l/ql)v A • • • A uptimes),       q = 1,..., k,

v(z) = \i[(z\dz)-(dz\z)}.

On Z-{0} we define the differential forms

<z) = \i\z\-i[\z\2(dz\dz)-(dz\z) A (z\dz)],

co, = (l/c7!)cu A ■ • ■ A co(c7-times),       q = I,.. .,k.

The euclidean volume element of Z is vk. We have

vk = d^tfi A dt/i A ufc_x = 2/ 8x/i A 8xfi A vk_x.

Define B={z \ z e Z, \z\ < 1}, S={z \ zeZ,\z\ = 1}. Orient S towards the exterior of

B, let a be the euclidean volume element of S, and let t: S^-Z be the inclusion.

Then

(7 =  -i*(dL*j> A vk_x).

Define 6: Z-{0} -* S by 0(z) = zl\z\. Then (t ° o)*(u) = cu [10, p. 142].

When we are considering more than one unitary space and confusion is possible,

we will use superscripts on the above quantities to indicate the space to which they

refer.

The important result of this section is the formula given in

Lemma 3.1. Let Z be a k-dimensional unitary space. Then 9*(o) = (2/<f>2k)ri/\vk_x.

Proof. As mentioned above, we have a= —i*(dL4iAvk_x). Now

-(d^)(z) = -i(8-8)(z\z)x<2

= -y\z\-x[8(z\z)-8(z\z)]

= (WzMz),



1968] FAMILIES OF NONNEGATIVE DIVISORS 229

i.e., -d1tfi=(2li/j)r¡. Hence

a = i*((2/fa)y) A vk_x),

e*(o) = (c°e)*((2/fa)ri a «*_,)

= 2(to0)*(r,  A «„_!>.

Note that

¿1*1 = (8 + 8)(z\z)112 = i\z\-1[(dz\z) + (z\dz)].

Let ex,..., ek be an orthonormal basis for Z, and define zf.Z-t-C by z;(z)

= (z\ej), j = 1, • • •, k. Then

(, o 0)*(z|<fc) = (• ° ö)*(2 z, «,) = 2 (z,/|*|) ̂/M),

(to ö)*(z|ä) = |*|-82*/{l«l *i-*/il*l-1K*l*)+(*l*)l}

= |2|-8{|z|(z|ife)-i|z|[(«|<fe) + (&|«)]}

= M-"-i[(*l*)-(*l*)]
= (2/i)\z\-2T,(z).

Similarly,

M)*(<fe|z) = -(2/0l*|-V*).
Therefore

(i o e)*(v)(z) = (i o ifö<[(«|A)-(dk|*)D

= |z|"Mz)

i.e., (i o ö)*(-»?) = (1/i/(2)t?. Since (t o 9)*(v) = a>, we have

Ô*(CT) = 2(.o 0)*fo a m_0 = (2/^ a «»_!.

But

cu(z) =  \z\-2v(z)-\i\z\-\dz\z) A (z|<fe)

and

irt«) = ii[(z|*)-(*|*)];
hence

rf<) A wk_x(z) =  \z\-<2k'2)v(z) A vk_x(Z),

i.e.,

i) A «Jfc., = (l/fa2k'2)v A l»fc_i.

Therefore 6*(a) = (2¡>l>2k)r¡ a i^_lf   Q.E.D.
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For reference we state the following well-known application of 1.2 (Fubini's

theorem) :

Proposition 3.2. Let Z be a k-dimensional unitary space. Let 0 á s < r, and define

A ={z\z eZ, s< \z\ <r}. Let f be a nonnegative measurable function on A. Then

( fiu"  f(f    f(ta)o(a))t2k-x dt.
Ja Js  \Jaes I

In particular, iff(txa) =f(t2a)=g(a) for tx, t2 with s<tx<t2<r and all ae S, then

jjvk = (l/2k)(r2k-s2k)jsga.

4. The first estimate. In the following, « will always denote an integer greater

than 1. Let F be a unitary space. We say that ce Fis a unit vector iff \c\ = 1. If c

is a unit vector, let

E(c) = {v\veV, (v\c) = 0}

denote the space of vectors orthogonal to c, and let pc : V -*■ E(c) denote the

projection defined by

Pc(v) = v-(v\c)c.

Since E(c) is a vector subspace of V, it is a unitary space under the same inner

product.

Let V be an «-dimensional unitary space, and let v be a nonnegative divisor on

the open subset G of V. For each open subset V of G, the volume of v in V is

(by definition)

VV(V) =   f   vvn_x,
Jm

where M= m(Wl(v)) n V.

Proposition 4.1. Let c be a unit vector in the n-dimensional unitary space V, and

let Z = E(c). Let v be a nonnegative divisor on the open subset G of V. Define M=

9i(9Jc(r)) and p = Pc\G:G^Z. Then

f   vp*(vzn-x) = f       2    "„(»K-iG) è VV(G).
J M JzeZ cep-i(i)

Proof. The above equality follows immediately from 2.2. Let iM: M-> G be

the inclusion. When expressed in coordinate notation, the inequality

is obvious. Hence

f  vp*(vl_x) ú f  wvn_x = VV(G), Q.E.D.
J M J M
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5. The second estimate. The main part of the proof of the second estimate is

given in the geometrical

Lemma 5.1. LetO<R'<R". Define

D" = {w | \w\ < R"} c C,       T = {/ | 0 S t S 1} c R-

Let F:IxD" ^>C be a continuous function such that f(t, ■) is holomorphic and ^0

for each tel.

(1) IfO$f(Ix{w | \w\=R'}), then

2   "m.->(w) =   2   "no.-M-
lw\<R' |lo|<B'

(2) In any case,

2   "rn.oO) =    2   vno.-Áw) +    2     2   "aí.•>(»')•
IwKfi' |lii|<R' 0S(<1 \w\ = R'

Proof. (1) Define/': Tx D" -> C by/'(r, w) = a/(/, u0/3h>. In view of the Cauchy

integral formula, /' is continuous. According to the argument principle (see any

text, for example [6, Vol. I, p. 252]),

<t) =   2   "/«.» = ¿f       WH*
iui|<ä' "ti Ji;i = b' 717 (J

The function a(t) is continuous and integral valued, hence constant. In particular,

a(l) = a(0).

(2) If „

lt»| = B'

for infinitely many t e I, there is nothing to prove. We may therefore assume that

2   "/». -)(w) = 0       for / g T- {fj,.. ., tk},

where 0 = tx < t2 < ■ ■ • < tk = 1.

Fix jeN with ISjSk-l. There exists r<R' such that f(tJ+x, w)^0 for

r^|w|</v'. Take t' with tj<t'<tj + x such that /(/, w)^0 if t'<t<tj+x and

|w| =r. From part (1),

2 "/«»+!.-)W = 2 "/(í/+i.)(m;) = 2 "/«'.-)(w) = 2 "/«'.•)(»")•
|10|<B' |u>|<r lu)|<r |u>|<fl'

Similarly, there exists t" with tj<t"<tj + x and

2 "/«".■>(*•) = 2 "v«i. >(w)-
|u>|<R' MSB'

According to (1),

2   *««'. -»(w) =   2   vnt\-lw)-
\w\<R' ¡w|<£'

Combining the last three relations, we obtain

2   Vr<h*i.-M-   2   "/«).-)W =   2   "/«,. •>(«')
|U)|<fl' |U)|<R' |U)| = «'

for /= 1,..., k- 1. Summing over j gives the desired inequality,   Q.E.D.
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The idea for this second estimate was given by Oka [8, p. 10].

Lemma 5.2. Let c be a unit vector in the unitary space V, and let Z=E(c). Let

0<RQ<R, R' > 0. Let G be an open neighborhood of

{z+wc\zeZ, R0 á \z\ £ R,\w\ g /?'},

and let v be a nonnegative divisor on G. Define p = pc\G: G —>- Z, and let zeZ with

R0ú\z\úR. Then

2    VP(Z+WC)£     2    Vp(RoZl\z\+WC) +      2 2    Vp(tz/\Z\ + Wc).
\w\<R' |tu|<fl' ñ0SÍS|z| \w\ = B'

Proof. We simply apply 5.1 in the obvious way. Let I={t \ O^t^l}, and define

<f>:I^Zby

<f>(t) = (l-t)R0z/\z\ + tz.

Let V be an open neighborhood of {</>(t) + wc\t el, \w\ ̂ R'} on which there exists

a holomorphic function g with vg = v\V. Take R">R' such that

{</>(t) + wc\ tel, \w\ < R"} c V.

Define/: Ix{w \ \w\ < R"}^C by

f(t,w) = g(</>(t) + wc).

Then / is continuous; f(t, ■) is holomorphic for each tel; and vm..,(w)

= vo(4>(t) + wc) for 0¿t¿l, | w\ < R". Hence

2      2   vp(tz¡\z\ + wc) =   2     2   vnt.M-

If/(/, ■ ) = 0 for some tel, then

2  2 vfv.iw) = c°,
OStSl |ui|=R'

and the desired estimate is trivial. (Here it is necessary that the summation be over

O^r^l, rather than 0 ̂  t< 1 as in 5.1.) If/(r, •) ^0 for each tel, we apply 5.1 to

obtain

2 »«L-Wá 2 "«o.-)(w)+ 2  2 vnt.)(w),
\W\<R' \W\<R' 0SiSl!u)| = B'

which is the desired estimate,   Q.E.D.

6. The third estimate. Let G be a complex manifold of dimension k, and let x

be a differential form of bidegree (k— 1, k— 1) on G. We say that x is semipositive

definite iff for every smooth (k— l)-dimensional complex submanifold M with

inclusion tM : M -> G, the induced form i%(x) is a nonnegative density on M. We

give another characterization of this property in

Proposition 6.1. Let G be a complex manifold of dimension k, and let x be a

differential form of bidegree (k—l, k—l) on G. Then x is semipositive definite if and
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only if for every differential form y of bidegree (I, 0) on G, the form \iyA y h y is a

nonnegative density.

Proof. Let zx,...,zk be local coordinates in G. Then

X = (iOfc_1 2 avi dzq A dzp A dzx A dzx A ■ • • ||p- • • ||*- • • A dzk A dzk

+ (¥)"~1 2 aP" dZl A dzx A • • ■ ||p- • ■ A dzk A dzk,
v

.where ||p means that the term dzvhdzp is omitted. The form x is semipositive

definite if and only if J,avqVvVq is a semipositive definite Hermitian form [11,

Satz 4.3, pp. 42-43]. If y is a differential form of bidegree (1, 0) on G, we have

Y = 2 c> */»       Y = 2 a' dïi'

and readily calculate

\iy A y A y = (iOfc(2 avic<fp) dzx A dzx A ■ ■ ■ A dzk A dzk,    Q.E.D.
\p,q I

We first present the third estimate in its unintegrated form :

Lemma 6.2. Let c be a unit vector in the n-dimensional unitary space V. Define

Z=E(c), and let p = pc: V->Z. Define S=Sz={z \ zeZ,\z\ = 1}, and let a=az be

the euclidean volume element of S. Let r:/?—>/? be the identity function. Let

■nx: S x R -» S, tt2: S x R ->■ R be the projections. Define

X = t*0) A wî(dr).

Define w: V-*■ C by w(v) = (v\c), and let

G = {v | v e V, p(v) ¿ 0, w(v) ¿ 0}.

Define a: G -> 5x R by

"iv) = (p(v)l\p(v)\, \w(v)\).

Then

a*(x) = |vf|-1|p|a-a,l/>*(V5 A vn-2) A (wdw + wdw).

Moreover, if M is an (n—l)-dimensional smooth complex submanifold of G and

iM: M-> G is the inclusion, then

|4«*(y)| ^ $\p\3-2nÛ(vl-i)-

Finally, if v is a nonnegative divisor on the open subset'JJ of G, M= 9î(5Dc(v)), and

iM : M —> G is the inclusion, then

^|4«*(y)| = *|'£«*(x)l ú H»|»--Miif-1>

Proof. We have a*(x) = a*(-!rf(o))Aa*(-!rí(dr)). Now 2\w\d\w\=d\w\2 = d(ww)

= w dw+ w dw; hence

a*(ir$(dr)) = d(r o tt2o a) = d\w\=^\w\'x(w dw + w dw).



234 T. J. BARTH [April

Let e=9z: Z-{0}-* S and 0=<£z: Z-{0}->•R. By 3.1,

= p*((2M2'l-2)r?Z A vzn_2)

= 2|p|2-2W A vz_2).

Therefore

a*(x) = |R>|-1|p|2-2np*(V5 A vz_2) A (wi/iv+VVohv)-

We have

vz - #W)-«] = -i^-#).

Define 0=0 ° p= |p| : V-> R. Then

a*(x) = -tf\w\-i\p\a-**(d<l>-d<p) A (wí/w + vví/w) A p*K-2).

It is well known that

i£_, = p*(vz_x) + iri dw A dw A p*0Z-2).

Let M be an (« — l)-dimensional smooth complex submanifold of G, and let

tM : M -+ G be the inclusion. Then

4«*(y) = -ii|w|-1|p|3-aBtA((w00 A íTvv-ívo^ a <ftv) A p*K_2)).

Note that y=4(2 S^ + (iv/|w|) dw) has bidegree (1, 0) and that iMp*(vl-2) is semi-

positive definite. According to 6.1,

¥y A y A iMp*(vZn-2) ^ 0.

But

¥y a y a tMp*(«n-2)

= #4(4 00 A 3^ + í/w a dw + 2(w/\w\)d<f> A í/ív —2(iv/|w|) 00 A dw)

a 4p*K-2)

= i*tP*(2idi¡> A dip a vl^2) + i%(\idw A dw A p*(vz-2))

+ <-m(1\w\~1(w dcf> A dw—wd</> a dw) A p*(vz-2))

= UP*tä-i)+i&¥dw A dw a p*(^-2))-2|p|2'*-34«*(x)

= 4K-i)-2|p|2"-3tM«*(x).

Hence

i*a*(x) S ÍIH^^mK-!).

Letting 3 = 4(2 8<f> — (w/\w\) dw) and proceeding as with y, we obtain

o s i/8 a s a 4p*K-2) = 4K-i)+2|p|2"-34«*(x).

Hence

-4«*(x) = ilpl3-2"'^-!),

which completes the proof of the inequality stated in this lemma.
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Let v be a nonnegative divisor on the open subset V of G, define M= 9t(2JÎ(v)),

and let tM : M -> G be the inclusion. Take v e M. If d(p ° iM) has complex rank n — 1

at v, then by 2.1, v(v) = vp(v) ; hence ví)|imoí*0c)|=>'|*m«*0()I at v. If the complex

rank of d(p ° iM) is less than « -1 at v, then the real rank is at most 2« - 4 at v ;

butf)zAvl_2 has degree 2«-3; by 1.1, iZp*(vzAu£_2)(»)=0; hence tMa*(x)(iO=0,

and vfl|.Ä«*Cf)| =0 = ,|4«*(x)| at »,   Q.E.D.
Integrating, we obtain

Lemma 6.3. Let c be a unit vector in the n-dimensional unitary space V. Define

Z=E(c), and let p = pc: F->Z. Define S=Sz={z \ zeZ, |z| = l}, and let a=oz be

the euclidean volume element ofS. Let 0 < R0 < R, 0 < R" < R', and define

V = {z+wc\zeZ,R0 < \z\ < R, R" < \w\ < R'}.

Let v be a nonnegative divisor on V. Then

r í Í        2      2 Vp(ta + wc)o(ä)\ dr Ï \R%-2«V¿V)
JR"   \JaeS R0<t<R\w\ = r

tr:Ä->Äbethe

be the projections, and define

R0<t<R M =

Proof. Let r : R -> R be the identity function. Let nx: S x R ->- S, n2: S x R ->» R

X = nf(o) A TT%(dr).

Define a : V -> S x R by

civ) = (p(v)/\p(v)\, \(v\c)\).

Define M= dt(M(v)), let iM: M-> V be the inclusion, and define ß = a\M=a ° iM.

According to 1.4 and 6.2,

f 2   >M¿y) = Í »,\ß*(x)\
ves~1(y)

è \R%-2nV¿V).

Using the fact that a(^R(v) - M) has measure zero in SxR, and then applying

Fubini's theorem (1.2), we obtain

f 2   ^»)-xO0 = f 2   v»(v)x(y)
JveS*ä iiej-l(s) JyeSxR vEa-1{y)

=  fíí        2      2 vp(ta + wc)*(a))dr,    Q.E.D.
JR" \JaeS Rq <t<R \w\ = r !

7. Applying the estimates. We begin by giving coordinate-free definitions of the

geometrical figures considered in the introduction. Let c be a unit vector in the

unitary space V. For 0 < R0 < R, 0 < R" < R', we define

Q(c; 7?, R') = {z+wc\ze E(c), \z\ < R, \w\ < R'},

T(c; R0, R; R", R') = Q(c; R0, R') u {z+ wc \ z e E(c), \z\ < R, R" < \w\ < R'}.
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We now combine our estimates to prove

Lemma 7.1. Let 0<Po<Px<P, 0<P"<P'X<P', and let « be an integer greater

than 1. Define

L = L(n;P0,Px;P'x,P')

= l+(2«-2)-1(271/70)2"-2(l+i7o(7'-70-1).

Let c be a unit vector in the n-dimensional unitary space V. Define Z=E(c); and let

P = pc. V ~^Z. Let v be a nonnegative divisor on Q(c; P, P'), and define

M = m(^l(u))nÇi(c;Px,P[).

Then

f  vp*(vz_x) S L- Fv(r(c; 70, 7; P", P')).
Jm

Proof. Define   F0= Vv(T(c;P0, P;P", P')).   Define  S=Sz = {z\ zeZ, \z\ = l},

and let a=az be the euclidean volume element of S. Define

U = {z+wc\ZeZ,iP0 < \z\ < PX,P{ < \w\ < P'},

"W = f 2       2 vp(ta + wc)a(a).
JaeS iP0<t<Px |u>| = r

Using 6.3 (the third estimate) and the fact that C/<= T(c;P0, P;P", P'), we obtain

f a(r)dr S \(\P0f-2nVv(U) S ±(2/P0)2»-*V0.
Jn

Therefore there exists R' withP'X<R'<P' and

a(R') S (7'-70-1i(2/70)2'-3F0.

Define

A = {z | zeZ, \P0 < \z\ < P0},

b(r) = 2   v„(ra+wc)a(a).
JaeS \w\<P'

estimate), and the fact that

{z+wc\zeA, \w\ < P'} c Y(c;P0,P;P",P'),

\w\

Using 3.2, 4.1 (the first estimate), and the fact that

we obtain

f °  b(r)r2«-°dr -  f       £   ^{z+wc)vz_x(Z) S VQ.
JiP0 JzeA |u,|<p'liP0 JzeA \w\<p'

Therefore there exists R0 with %P0 <R0<P0 and

b(R0)R2on-3 S (70-i70)-1F0.

It follows that

b(R0) S (2/70)2"-2F0.
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Define H={z \ z e Z, R0 < \z\ <PX}. We have M^ m' u M" where

M' = diCm(v)) nT(c;P0,P;P",P'),

M" = m(M(v)) n {z+wc | z e 77, |w| < R'}.

Hence

f   vp*(vzn.x) g   f    vp*(vzn_x)+ f    vp*(vz_x).
Jm Jm' Jm"

Clearly

f   ^»(«5-i) ̂  F0.

Applying 4.1 (the first estimate), 5.2 (the second estimate), and 3.2, we see that

f   *A«?-i) = f       2   -p(z + wc)vz_x(z)
Jtii" JzeH \w\<R'

=   f        2   Vp(RoZl\z\ + wc)vz_x(z)
JzeH |uj|<R'

+ Í 2 2    Vp(tZl\z\+WC)vz_x(Z)
JzeH «oStSlzl \w\ = R'

Ú   f 2    Vp(RoZ/\z\+WC)vzn_x(z)
JzeH |ui|<B'

"i 2 2    Vp(tZl\z\+WC)vzn_x(z)
JzeH R0St<Px \wl = R■

+

(2n-2)-x(Px2n-2-R2on-2)

Therefore

x[f      2   Vp(R0a + wc)o(a)+ f        2       2   vp(ta + we)a(o)
tJaeS \w\<R- J"eS B0st<Pi  |u>| = S'

Ú (2n-2)-xP2n-2[b(R0)+a(R!)]

ú (2«-2)-1P12n-2[(2/Po)2"-2F0 + (P'-Pi)-1K2/Po)2n-3F0]

= (7-l)F0.

f  vp*(vz_x)ïL-V0, Q.E.D.
Jm

8. Wiggling. In the last section we established an estimate for one of the «

"components" of the volume of a divisor. Since estimation of the other «—1

"components" appears difficult, we avoid it by means of the "wiggling" lemmas.

In proving our first wiggling lemma we use the existence of "normal" vectors:

Lemma 8.1. Let V be an n-dimensional unitary space. For each unit vector c e V,

define zc: F—> C by zc(v) = (v\c). Let M be an («— l)-dimensional smooth complex
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submanifold of V, and let tM : M -> V be the inclusion. Take be M. Then there exists

a unit vector ne V with i*i(dzn)(b) = 0.

Proof. Let cx,...,cn be a basis for  V. Then  i*,(dzCl)(b),..., iM(dzcJ(b) are

linearly dependent, i.e., there exists (ax,..., an) e Cn-{0} such that

2aA(dzC))(b) = 0.

Define « = 2^/12 öjcf\. Then \n\ = 1, and a straightforward computation shows

that4(¿fe»X*)=0,   Q.E.D.
The first wiggling lemma states that estimates can be obtained without assuming

that the basis is orthonormal. More precisely,

Lemma 8.2. 7er cx,..., cn be a basis for the unitary space V. Suppose that each

Cj is a unit vector, let Z¡ = E(cj), and define p¡ = pCj'- V —>Z¡. Define

K = Min J2 \(e\c,)\2 | e e V, \e\ = l| > 0.

Let  M be an  (n — l)-dimensional smooth  complex submanifold of V,  and let

iM : M —> V be the inclusion. Then

lM(vVn-X)S K-h^pftfl^.

Proof. Take be M. Let n be the unit vector given by 8.1. Define z: V -* C by

z(v) = (v\n); then i*¡(dz)(b) = 0. Let ex,...,en be an orthonormal basis for V with

en=n. Define z¡: F-> Cby zj(v) = (v\e,),j=l,...,«.

Let c be a unit vector in V. Define Z=E(c), and let p = pc- V-+Z. Define

w: V—*■ C by w(v) = (v\c). In coordinate notation it is clear that

vl-i = P*(vn-i) + iidw A dw A vvn_2.

We have

K») = (2 zX«0«/lc) = 2 (eÁc)zÁv),

dw = V (e,|c) dz,,       dw = V (c\e,) dzt.

Since i*t(dzn)(b) = 0,

iM(¥dw A dw A vvn_2)(b)

■ ¥Í 2 (eÁc)dzi\ a (2 (c\e¿dzi)'.V

A ( 2 (i0n_2 Ai A Ä! A ■■•['•■■ A «fc»_i A dSn-jj

= 4Í2 (Í0n_1|(^k)r^i Aíi A • • • A <fe»_i A dzn.x\(b)

= ("2 N«)l»)«S0*-i)(*).

(A)
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Therefore

£p*W-i)(*) = 4K-!-i^W A dw A vl_2)(b)

= (i-n2 IW«)l")4M-iX*)

= |(«„k)|a4W_iX*).

Here we have used the fact that \c\ = 1. Since c was an arbitrary unit vector in V,

we have

4(2 p,Kz'-i))(A) = (2 l(«»k,)l j'ÄK-iX*)

^ KtM(vvn_x)(b), Q.E.D.

The second wiggling lemma shows that a small change in the unit vector c does

not seriously disturb the geometrical figures of §7.

Lemma 8.3. 7er c be a unit vector in the unitary space V. Let 0<R0<Rx<R,

0<R"<R'x<R'. Then there exist constants 8>0, 0<P0<Px<P, 0<P"<P[<P',

such that

T(b;P0, P;P",P')a F(c; R0, R; R", R'),

Q(b;P,P')czÇi(c ;R,R'),

Cl(c; Rx, R'x) ̂  Cl(b;Px,Pl),

whenever b is a unit vector in V with \b — c\< S.

Proof. Define e = Min (R-Rx, R'-R'x, R0). Define 8 = e/6(R+R'),

P0 = R0-$e, Px = Rx+$e, P = R-$e,

P" = R" + J¡E, Px = R'x+^e, P' = R'-$e.

Applying the triangle inequality many times will complete the proof; we omit this

tedious exercise.

9. The lemma. We are finally prepared to prove the main result of this paper,

a generalization to « dimensions of a result of K. Oka [8, p. 11].

Lemma 9.1. Let c be a unit vector in the n-dimensional unitary space V. Let

0 < 7?0 < Rx < R, 0 < R" < R'x < R'. Then there exists a constant

C = C(n; R0, Rx, R; R", Rx, R')

such that

Fv(Q(c; Rx, R'x)) Í C- Vv(T(c; R0, R; R", R'))
t

for every nonnegative divisor v on Q(c; R, R').
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Proof. Let 8>0, 0<Po<P1<P, 0<P"<P'x<P' be the constants given by 8.3.

For each unit vector be Vwith \b — c\ <8, we have

T(b;P0, P;P",P')<^ T(c; R0, R; R", R'),

Cl(b;P,P')^n(c;R,R'),

Q(c;Rx,R'x)^ü(b,Px,P'x).

Let cx,..., cn be a basis for F with |c>| = l and [cy—c| <S, j=l,..., n. Let

K = Min J2 \(e\c,)\2 \eeV,\e\ = l\ > 0.

Let Zj = E(Cj) and define p5=pCj: V->Z¡. According to 8.2,

Û(vl-i)  è  K-XlM(2pK»Zn'-l))

whenever M is an (« —l)-dimensional smooth complex submanifold of V and

iM: M-^ V is the inclusion. Let 7=7(«; P0, Pi! Pí, P') be the constant given in

7.1. Define

C = C(«; R0, Rx, R; R", R'x, R') = nL/K.

Let v be a nonnegative divisor on Q.(c; R, R'). Define

M = 9î(9Jc(v)) n Ü(c; Rx, R'x),

M, = m(W(v)) n Q(Cj; Px, Px),      7=1,...,».

Then, using 7.1 we obtain

Fv(Q(c; Rx, R'x)) = ¡  wvn.x
Jm

ÍK-X2¡   'Pftâ'-i)
i  Jm

âK-xZ\   vpf(vzLx)
j  Jm,

ÚK-XJ^L Fv(r(cy;P0,P;P",P'))
i

Ú (nL/K)Vv(Y(c; R0, R; R", R')), Q.E.D.

10. Stein manifolds. We assume knowledge of the basic facts about Stein mani-

folds listed by Gunning and Rossi [5, Theorem 4, p. 283]. In this section we supply

an answer to the question : When is an open subset of a Stein manifold again a

Stein manifold? We will use the answer given by H. J. Bremermann [1]:

Proposition 10.1. Let D be an open subset of the Stein manifold G. Then D is a

Stein manifold if and only if it is locally a Stein manifold, i.e., each point of D has an

open neighborhood V such that V n D is a Stein manifold.
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Let G and H be complex manifolds, and let A<=G. We say that r : A -> H is

holomorphic (resp. biholomorphic) iff there exists an open neighborhood U of A

and a holomorphic (resp. biholomorphic) extension rx : U -> H (resp. rx : U

->T1(f7)cTT)of r.

In Cn we define the compact sets

Q = {(zx,...,zn)\ |z1|a+...+|rn_ip S \,\zn\ S I},

r = {(z1,...,zn)| \zx\2+--. + \zn_x\2S 1, |zn| . l}u{(0,...,0,zn)| |zn| S 1}.

The Cauchy integral formula allows us to extend each holomorphic function / on

T to a holomorphic function fx on Ü. given by

fx(zx, ...,zn) = T-\       f(zx,..., zn_1( 0 -r—
^ij\a\=i i-zn

for |zn| < 1.

Our answer to the question of this section appears below. It seems to be well-

known but unpublished. The author is indebted to Professor Hans Grauert for

the method used in part (b) (the difficult part).

Proposition 10.2. Let D be an open subset of the n-dimensional Stein manifold G.

Then D is a Stein manifold if and only if t(Q.)<= d whenever t: Q ->- G is a biholo-

morphic map with t(F) c D.

Proof, (a) Suppose that D is a Stein manifold. Let t: Q. -*■ G be a biholomorphic

map with K= t(T) c d. If/is a continuous function on the compact set K, we define

||/||K = Max{|/(x)||xGTv-}.

Let DD be the set of holomorphic functions defined on D. Since each holomorphic

function on T extends to a holomorphic function on Q, the same is true for t(F) = K

and t(Q). By the maximum modulus theorem

K = {x | x g D, \f(x)\ S ll/IU for allfe DD} => D n T(D) => K # 0.

Since D is a Stein manifold, K is compact. Hence

D n r(Q) = Kn Dn r(Q.) = Kn T(C1)

is open and closed in the connected set t(îî). Therefore r(Q) = Dr\ t(Q.), i.e.,

t(Q)cT>.

(b) Suppose that r(D) c f) whenever t : D ->■ G is a biholomorphic map with

t(T)cD. We must prove that D is a Stein manifold. In view of 10.1, we may

assume that G is an open subset of Cn. Suppose that D is not a Stein manifold.

Then Dj=Cn. Let | | be the euclidean norm on C : |z|2 = 2 \z¡\2 if z = (zx,..., zn).

Define d: D -> R by

d(z) = Min {|z— m»| | h> ̂ D}.
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Then -log d is not plurisubharmonic. Since dis positive and continuous, —log d

is continuous. Hence there exists a plane

7 = {z | z = Zo + te, t £ C}

where z0eCn,eeCn, \e\ = l, such that

(-logo?) | Tn D

is not subharmonic. By changing z0 if necessary, there exists r>0 and a continuous

function « on

A = {z | z = Zo + te, \t\ S r} <= D

such that

(1) « is harmonic on A={z \ z = za + te, \t\ </•},

(2) - log d(z) Ú h(z) for z e A - A,

(3) — log d(a) > h(a) for some a £ A.

By adding a small positive constant to « and then taking r slightly smaller, we may

even assume that

(F) « is defined and harmonic in an open neighborhood of A in T.

Finally, we can change our coordinate system in Cn so as to make z0=0 and

r=l. Let g be a holomorphic function on A with — «= Dteg (the real part of g).

Define f=eg. Then/is nonzero and holomorphic on A, and

l/l   = e9îc9 =  e-h

We can rewrite (2), (3) as

(2') \f(z)\=e-"^id(z) for z e Ä- A,

(3') \f(a)\ =e-^>d(a).

Now a = ae, where \a\ < 1. Take b e D — D with d(a) = \a — b\.

(i) If b e T, then |*|>1, i.e., b = be where |6|>1. For \t\£l, define

F(t)=f(te)/(t-b).

Then Fis holomorphic, and for |r| = l,

\F(t)\ = \f(te)\/\t-b\ Ú d(te)/\t-b\

^ \te-b\l\t-b\ = I.

By the maximum modulus principle, |F(a)| ^ 1. But

\F(a)\ = |/(a)|/|fl-i| > d(a)/\a-b\

= |a-A|/|fl-i| = 1,

a contradiction.

(ii) If b $ T, then e and c = a — b are linearly independent. Define cx = c/\c\; take

c2,.. .,cn_xe Cn such that cx,..., cn_x are orthonormal and cx,.. .,cn_x, e are

linearly independent. Define X = d(a)jf(a). Then 0< |A| < 1. Define t: Q -h> Cn by

n-l

r(zx, ...,zn) = zne-Xf(zne) 2 zfj.
; = l
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In the coordinates given by cx,.. .,cn.x, e, the Jacobian determinant of t is

(—A/(zne))n_1^0; moreover t is one-to-one. Therefore r:Q.->Cn is biholo-

morphic. Now

t(0,...,0,z„) = zneGÄ c D       for \zn\ S 1.

Also, if |z1|2+--- + |zn_1|2^l and |zn| = l, then

|zne-T(Zi, ...,z„)| ¥(zne) 2 ZA

á |A| \f(zne)\ < d(zne);

hence t(z1} ..., zn)e D. Therefore t(F)<= D<=G. Since G^Cis a Stein manifold,

part (a) assures us that t(Q)c:G. According to our basic assumption, t(Q)<=D.

In particular,

r(l,0,...,0,«) = «-A/(a)c1

= a — d(a)cx

= a— \a — b\ (a — b)/\a — b\

= b

belongs to D, a contradiction,    Q.E.D.

11. The set of points of the first kind. Oka [8, p. 11] introduced the concept of

a point "de première espèce" given in

Definition 11.1. Let 9î={vA}^eA be a family of nonnegative divisors on the

«-dimensional complex manifold G, and let A = {aÁ}AeA be a family of nonnegative

real numbers indexed by the same set A. A point a g G is said to be of the first

kind (with respect to 9Î and A) iff there exists an open set U in Cn and a biholo-

morphic map a: U -» G such that

(l)aea(U),

(2) supKFVA.a(i/)|A6A}<co.

(Since a is biholomorphic, a*(vÁ) = vA o a.)

Let 9Î be a family of nonnegative divisors on the «-dimensional complex manifold

G, and let A be a family of nonnegative real numbers. The set D of points of the

first kind (w.r.t. 9? and A) is clearly open. If U is an open set in C" and a: U ->G

is a biholomorphic map with a(t/)c: c £)t then

supKFVA.a(i/)| A g A} < co.

We generalize a result of Oka [8, pp. 11-12] in

Theorem 11.2. Let yi={v^}h£A be a family of nonnegative divisors on the Stein

manifold G, and let A={a^}ÁeA be a family of nonnegative real numbers. Then

D = {z\zeG, z is of the first kind w.r.t. 3Î and A}

is a Stein manifold.
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Proof. Our criterion is 10.2. Let « be the dimension of G, and let r: Q -> G be

a biholomorphic map with t(T)<=D. Let V be an open neighborhood of Q. in

Cnand rx: U-* tx(V)<=G be a biholomorphic extension of t. Define c=(0, .. .,0, 1)

eCn. TakeO<R0<l<Rx<R,0<R"<l<R'x<R' suchthat

Q <= Q(c; Rx, R'x) <= Q(c; R, R') c V,

T c T(c; R0, R; R", R') c c Tfi(/j> n rx(V)).

Define

7 = sup {aAFVA.Tl(r(c; P0, P; 7?", P')) | A e A} < co.

Let C=C(n; R0, Rx, R; R", R'x, R') be the constant given by 9.1. Then

aAFVVI1(0(c; Rx, R'x)) á C-axVVK.zl(Y(c; R0, R; R", R')) é CL < oo

for A e A. Hence t(£ï) c D,   Q.E.D.

12. The normality domain. Stoll [13, Definition 2.6, p. 176] introduced a

concept of convergence of divisors clearly equivalent to

Definition 12.1. A net $«)}& of nonnegative divisors on the complex manifold

G is said to be convergent iff each a e G possesses an open neighborhood V on

which there is a net {f,}jEj of holomorphic functions satisfying

(1) v;¡ = Vj\VforjeJ,

(2) f -+f&0 (/->/) uniformly on V.

A family 92 of nonnegative divisors on a complex manifold is said to be normal

iff every subnet of 9c has a convergent subnet. The following Montel-type theorem is

due to Stoll [13, Theorem 2.24, p. 188].

Proposition 12.2. Let 9c, = {yA}AeA be a family of nonnegative divisors on the n-

dimensional complex manifold G. Then 9Î is normal iff for each ae G there exist an

open set V in Cn and a biholomorphic map a : V -> G such that

(1) a £ a(V),

(2) sup{V^a(V)\XeA}<œ.

Let 3Î = {vA}AeA be a family of nonnegative divisors on the complex manifold G.

If V is an open subset of G, we define

5R|t/ = K|C/}A.A;

9t| V is a family of nonnegative divisors on V. Clearly 9Î is normal iff it is locally

normal, i.e., for each ae G there exists an open neighborhood V such that 9t|V

is normal.

Definition 12.3. Let 9c be a family of nonnegative divisors on the complex

manifold G. The normality domain of 9t is the largest open set D <= G such that

9Î|T> is normal.

Finally, we show how a result of Oka [7, Theorem 2, p. 95] and O. Fujita

[3, Theorem 1, p. 385] can be obtained from 11.2.
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Theorem 12.4. Let 9î={vA}AeA be a family of nonnegative divisors on the Stein

manifold G. Then the normality domain of 9Î is a Stein manifold.

Proof. Define aA= 1 for A g A, and let A={a,}heA. In view of 12.2, the normality

domain of 9Î is

{z | z g G, z is of the first kind w.r.t. 9Î and A}.

According to 11.2, this is a Stein manifold,   Q.E.D.
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