Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Conditions implying that a $ 2$-sphere is almost tame


Author: L. D. Loveland
Journal: Trans. Amer. Math. Soc. 131 (1968), 170-181
MSC: Primary 54.78
DOI: https://doi.org/10.1090/S0002-9947-1968-0224074-2
MathSciNet review: 0224074
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] W. R. Alford, ``Some ``nice'' wild 2-spheres in $ {E^3}$,'' in Topology of 3-manifolds and related topics, pp. 29-33, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 0141091 (25:4504)
  • [2] R. H. Bing, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145-158. MR 0061377 (15:816d)
  • [3] -, An alternative proof that 3-manifolds can be triangulated, Ann. of Math. (2) 69 (1959), 37-65. MR 0100841 (20:7269)
  • [4] -, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294-305. MR 0131265 (24:A1117)
  • [5] -, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 456-483. MR 0087090 (19:300f)
  • [6] -, Approximating surfaces from the side, Ann. of Math. (2) 77 (1963), 145-192. MR 0150744 (27:731)
  • [7] -, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33-45. MR 0160194 (28:3408)
  • [8] -, Each disk in $ {E^3}$ contains a tame arc, Amer. J. Math. 84 (1962), 583-590. MR 0146811 (26:4331)
  • [9] -, Retractions onto spheres, Amer. Math. Monthly 71 (1964), 481-484. MR 0162236 (28:5435)
  • [10] C. E. Burgess, Characterizations of tame surfaces in $ {E^3}$, Trans. Amer. Math. Soc. 114 (1965), 80-97. MR 0176456 (31:728)
  • [11] -, Criteria for a 2-sphere in $ {S^3}$ to be tame modulo two points, Michigan Math. J. 14 (1967), 321-330. MR 0216481 (35:7314)
  • [12] P. H. Doyle and J. G. Hocking, Some results on tame disks and spheres in $ {E^3}$, Proc. Amer. Math. Soc. 11 (1960), 832-836. MR 0126839 (23:A4133)
  • [13] D. S. Gillman, Note concerning a wild sphere of Bing, Duke Math. J. 31 (1964), 247-254. MR 0161317 (28:4525)
  • [14] John Hempel, A surface in $ {S^3}$ is tame if it can be deformed into each complementary domain, Trans. Amer. Math. Soc. 111 (1964), 273-287. MR 0160195 (28:3409)
  • [15] -, Free surfaces in $ {S^3}$, (to appear).
  • [16] L. D. Loveland, Tame surfaces and tame subsets of spheres in $ {E^3}$, Trans. Amer. Math. Soc. 123 (1966), 355-368. MR 0199850 (33:7990)
  • [17] E. E. Moise, Affine structures in 3-manifolds. VIII. Invariance of the knot-types; local tame inbedding, Ann. of Math. (2) 59 (1954), 169-170. MR 0061822 (15:889g)
  • [18] C. D. Papakyrakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1-26. MR 0090053 (19:761a)
  • [19] -, On solid tori, Proc. London Math. Soc. (3) 7 (1957), 281-299. MR 0087944 (19:441d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.78

Retrieve articles in all journals with MSC: 54.78


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1968-0224074-2
Article copyright: © Copyright 1968 American Mathematical Society

American Mathematical Society