THE CHARACTERS OF THE FINITE SYMPLECTIC GROUP \(Sp(4, q) \)

BY

BHAMA SRINIVASAN

1. Introduction. In this paper we calculate all the (complex) irreducible characters of the group \(Sp(4, q) \) where \(q \) is odd. The conjugacy classes of this group have been determined by Dickson [1a], Springer [4], and Wall [7]. We show that the irreducible characters of the group fall into families in a natural way, just as the conjugacy classes of the group do. Also involved in our work are certain polynomials in \(q \) which have properties similar to those of the polynomials \(Q_a \) defined by Green [2] in his work on the characters of the groups \(GL(n, q) \).

I thank Dr. R. Ree for many valuable and stimulating discussions.

Notation. \(G \) is the group of all nonsingular \(4 \times 4 \) matrices \(X \) over \(F = GF(q) \) (\(q \) a power of the odd prime \(p \)) satisfying \(XAX' = A \), where

\[
A = \begin{pmatrix}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{pmatrix}.
\]

The order of \(G \) is \(q^4(q^2 - 1)(q^4 - 1) \), and the center \(Z \) is of order 2. (See e.g. Dickson [1].)

Let \(\kappa \) be a generator of the multiplicative group of \(GF(q^4) \), and let \(\zeta = \kappa^{q^2 - 1}, \ \theta = \kappa^{q^2 + 1}, \ \eta = \theta^{q - 1}, \ \gamma = \theta^{q + 1} \). Choose a fixed isomorphism from the multiplicative group of \(GF(q^4) \) into the multiplicative group of complex numbers, and let \(\xi, \ \theta, \ \eta, \ \gamma \) be the images of \(\zeta, \ \theta, \ \eta, \ \gamma \) respectively under this isomorphism.

By a character of a finite group we mean a rational integral combination of the complex irreducible characters of the group. If \(\chi, \phi \) are class functions on the group, the scalar product \(\langle \chi, \phi \rangle \) is defined as usual.

If \(\phi \) is a character of a subgroup \(H \) of \(G \), \(\phi^G \) denotes the character of \(G \) induced from \(\phi \).

Conjugacy Classes of \(G \). Each element of \(G \) is an element of \(GL(4, q) \), and so there correspond to it its characteristic polynomial \(f_1 f_2 \ldots \) where \(f_1, f_2, \ldots \) are distinct irreducible polynomials over \(F \), and certain partitions \(\nu_1, \nu_2, \ldots \) of the positive integers \(n_1, n_2, \ldots \) (see [2, p. 406]). Using the results of Wall [7] we see the conjugacy classes of \(G \) are given by the table below.

Received by the editors September 16, 1966.

(1) This research was supported by a National Research Council (Canada) Postdoctoral Fellowship at the University of British Columbia.
<table>
<thead>
<tr>
<th>Class representative</th>
<th>Number of classes</th>
<th>Order of centralizer</th>
<th>Notation</th>
</tr>
</thead>
</table>
| \[
\begin{pmatrix}
1 & 1 \\
1 & 1 \\
1 & 1
\end{pmatrix},
\begin{pmatrix}
-1 & 1 \\
1 & -1 \\
-1 & -1
\end{pmatrix}
\] | 1, 1 | \(q^4(q^2-1)(q^4-1)\) | \(A_1, A_1'\) |
| \[
\begin{pmatrix}
1 & 1 \\
1 & 1 \\
1 & 1
\end{pmatrix},
\begin{pmatrix}
-1 & -1 \\
1 & -1 \\
1 & -1
\end{pmatrix}
\] | 1, 1 | \(2q^4(q^2-1)\) | \(A_{21}, A_{21}'\) |
| \[
\begin{pmatrix}
1 & \gamma \\
1 & 1 \\
1 & 1
\end{pmatrix},
\begin{pmatrix}
-1 & -\gamma \\
1 & -1 \\
1 & -1
\end{pmatrix}
\] | 1, 1 | \(2q^4(q-1)\) | \(A_{31}, A_{31}'\) |
| \[
\begin{pmatrix}
1 & 1 \\
1 & 1 \\
1 & 1
\end{pmatrix},
\begin{pmatrix}
-1 & -1 \\
-1 & -1 \\
1 & 1
\end{pmatrix}
\] | 1, 1 | \(2q^4(q+1)\) | \(A_{32}, A_{32}'\) |
| \[
\begin{pmatrix}
1 & 1 \\
1 & 1 \\
1 & 1
\end{pmatrix},
\begin{pmatrix}
-1 & -1 \\
-1 & -1 \\
1 & 1
\end{pmatrix}
\] | 1, 1 | \(2q^2\) | \(A_{41}, A_{41}'\) |
| \[
\begin{pmatrix}
1 & 1 \\
1 & 1 \\
1 & 1
\end{pmatrix},
\begin{pmatrix}
-1 & -1 \\
-1 & -1 \\
1 & 1
\end{pmatrix}
\] | 1, 1 | \(2q^2\) | \(A_{42}, A_{42}'\) |
| \[
\begin{pmatrix}
\zeta^i \\
\zeta^{-1} \\
\zeta^i
\end{pmatrix},
\begin{pmatrix}
\zeta^{-i} \\
\zeta^i \\
\zeta^{-i}
\end{pmatrix}
\] | \(\frac{1}{2}(q^2-1)\) | \(q^2+1\) | \(B_i(l)\) |
<table>
<thead>
<tr>
<th>Class representative</th>
<th>Number of classes</th>
<th>Order of centralizer</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ^{i}</td>
<td>$\frac{1}{2}(q - 1)^2$</td>
<td>$q^2 - 1$</td>
<td>$B_2(i)$</td>
</tr>
<tr>
<td>η^{i}</td>
<td>$\frac{1}{2}(q - 1)(q + 1)$</td>
<td>$(q - 1)^2$</td>
<td>$B_2(i, j)$</td>
</tr>
<tr>
<td>η^{i}</td>
<td>$\frac{1}{2}(q - 1)$</td>
<td>$q^2 - 1$</td>
<td>$B_2(i, j)$</td>
</tr>
<tr>
<td>η^{i}</td>
<td>$\frac{1}{2}(q - 1)$</td>
<td>$q^2 + 1$</td>
<td>$B_2(i)$</td>
</tr>
<tr>
<td>η^{i}</td>
<td>$\frac{1}{2}(q - 1)$</td>
<td>$q^2 - 1$</td>
<td>$B_2(i)$</td>
</tr>
<tr>
<td>η^{i}</td>
<td>$\frac{1}{2}(q - 1)$</td>
<td>$q^2 + 1$</td>
<td>$B_2(i)$</td>
</tr>
<tr>
<td>η^{i}</td>
<td>$\frac{1}{2}(q - 1)$</td>
<td>$q^2 - 1$</td>
<td>$B_2(i)$</td>
</tr>
<tr>
<td>η^{i}</td>
<td>$\frac{1}{2}(q - 1)$</td>
<td>$q^2 + 1$</td>
<td>$B_2(i)$</td>
</tr>
<tr>
<td>η^{i}</td>
<td>$\frac{1}{2}(q - 1)$</td>
<td>$q^2 - 1$</td>
<td>$B_2(i)$</td>
</tr>
<tr>
<td>η^{i}</td>
<td>$\frac{1}{2}(q - 1)$</td>
<td>$q^2 + 1$</td>
<td>$B_2(i)$</td>
</tr>
</tbody>
</table>

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
$\begin{pmatrix} \eta^{-1} \\ 1 \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} \eta^{-1} \\ -1 \\ -1 \\ -1 \end{pmatrix}$	$\frac{1}{2}(q-1)$, $\frac{1}{4}(q-1)$	$C_{21}(i)$, $C_{21}'(i)$
$\begin{pmatrix} \eta^{-1} \\ 1 \\ \gamma \\ 1 \end{pmatrix}$	$\begin{pmatrix} \eta^{-1} \\ -1 \\ -\gamma \\ -1 \end{pmatrix}$	$\frac{1}{2}(q-1)$, $\frac{1}{4}(q-1)$	$i \in T_2$
$\begin{pmatrix} \gamma^{-1} \\ 1 \\ 1 \end{pmatrix}$	$\begin{pmatrix} \gamma^{-1} \\ -1 \\ -1 \end{pmatrix}$	$\frac{1}{2}(q-3)$, $\frac{1}{4}(q-3)$	$i \in T_1$
$\begin{pmatrix} \gamma^{-1} \\ 1 \\ \gamma \\ 1 \end{pmatrix}$	$\begin{pmatrix} \gamma^{-1} \\ -1 \\ -\gamma \\ -1 \end{pmatrix}$	$\frac{1}{2}(q-3)$, $\frac{1}{4}(q-3)$	$i \in T_1$
$\begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}$			$q^2(q^2-1)^2$
$\begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -1 \\ -\gamma \\ -1 \end{pmatrix}$		D_{21}, D_{22}
$\begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ \gamma \\ 1 \\ -1 \end{pmatrix}$		D_{23}, D_{24}
$\begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -1 \\ -\gamma \\ -1 \end{pmatrix}$		D_{31}, D_{32}
$\begin{pmatrix} 1 \\ \gamma \\ 1 \\ -1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ \gamma \\ 1 \\ -1 \\ -1 \end{pmatrix}$		D_{23}, D_{24}
(We remark that in the first column we give as class representatives not necessarily elements of G, but their canonical forms in an extension field of F.)

Remarks. The sets R_1, R_2, T_1, T_2 of positive integers mentioned in the table are defined as follows.

R_1 = \{1, 2, \ldots, \frac{1}{2}q^2 - 1\},
R_2$ is a set of $\frac{1}{2}(q-1)^2$ distinct positive integers i such that ϕ_i, θ^{-i}, θ^{qi}, θ^{-qi} are all distinct,

T_1 = \{1, 2, \ldots, \frac{1}{2}(q-3)\}, and T_2 = \{1, 2, \ldots, \frac{1}{2}(q-1)\}.

The elements of the classes $B_1(i), \ldots, B_9(i), B_8(i), B_9(i)$ are p-regular. The elements of $B_7(i)$ and $B_9(i)$ have their ϕ-regular factors in $B_8(i)$ and $B_9(i)$ respectively.

Lemma 1.1. Let A be the additive group of F, i.e. an elementary abelian group of order q. Then there exist irreducible characters $\alpha \to \epsilon(\alpha)$ and $\alpha \to \epsilon'(\alpha)$ of A such that

$$\sum_{\alpha \in S} \epsilon(\alpha) = \sum_{\alpha \in S'} \epsilon'(\alpha) = -\frac{s}{2} (s + (sq)^{1/2}),$$
$$\sum_{\alpha \in S} \epsilon(\alpha) = \sum_{\alpha \in S'} \epsilon'(\alpha) = -\frac{s}{2} (s - (sq)^{1/2}),$$

where $s = (-1)^{(q-1)/2}$, S is the set of nonzero elements of F which are squares, and S' is the set of elements of F which are not squares in F.

Proof. We know (see e.g. [5, p. 103]) that there exist characters ϕ, ϕ' of A such that

$$\phi(0) = \phi'(0) = \frac{1}{2}(q+s),$$
$$\phi(\alpha) = \frac{1}{2}(s + (sq)^{1/2}) \quad \text{if } \alpha \in S,$$
$$= \frac{1}{2}(s - (sq)^{1/2}) \quad \text{if } \alpha \in S',$$

and

$$\phi'(\alpha) = \frac{1}{2}(s - (sq)^{1/2}) \quad \text{if } \alpha \in S,$$
$$= \frac{1}{2}(s + (sq)^{1/2}) \quad \text{if } \alpha \in S'.$$

Then $(\phi', \phi') = (\phi, \phi) = \frac{1}{2}(q+s)$, and

$$(\phi, \phi') = 1 \quad \text{if } q \equiv 1 \pmod{4},$$
$$= 0 \quad \text{if } q \equiv -1 \pmod{4}.$$

ϕ and ϕ' contain the identity character if $q \equiv 1 \pmod{4}$ and have no irreducible constituent in common if $q \equiv -1 \pmod{4}$. They are each the sum of $\frac{1}{2}(q+s)$ distinct irreducible characters.

Let ϵ (ϵ') be a nonidentity irreducible character of A occurring in ϕ' (ϕ) if $q \equiv 1 \pmod{4}$, and in ϕ (ϕ') if $q \equiv -1 \pmod{4}$. Solving the equations

$$(\epsilon, \phi') = 1, \quad (\epsilon, \phi) = 0 \quad \text{if } q \equiv 1 \pmod{4},$$
$$(\epsilon, \phi) = 1, \quad (\epsilon, \phi') = 0 \quad \text{if } q \equiv -1 \pmod{4},$$

we find that ϵ, and similarly ϵ', have the required properties.
Let $\varepsilon = -s(s+(sq)^{1/2})/2$, $\varepsilon' = -s(s-(sq)^{1/2})/2$, where $s = (-1)^{q-1}/2$

We have the identities

$$\varepsilon^2 + \varepsilon'^2 = \frac{1}{4}(1+sq),$$
$$2\varepsilon\varepsilon' = \frac{1}{4}(1-sq).$$

2. The Sylow p-subgroup of G. Consider a Sylow p-subgroup U of G of order q^4 consisting of all matrices of the form

$$\begin{pmatrix}
1 & \lambda & 0 & \lambda\alpha + \beta \\
0 & 1 & 0 & \alpha \\
-\alpha & \beta & 1 & \mu \\
0 & 0 & 0 & 1
\end{pmatrix} \quad (\lambda, \alpha, \mu, \beta \in F).$$

This element of U will be denoted by $(\lambda, \alpha, \mu, \beta)$. The elements of the form $(\lambda, 0, \mu, \beta)$ form a subgroup W of U of order q^3. The center is of order q. The commutator subgroup is of order q^2 and consists of elements of the form $(0, 0, \mu, \beta)$.

The conjugacy classes of U are given in the table below. Again we use the results of Wall [7] to determine the class of G in which each class of U lies.

<table>
<thead>
<tr>
<th>Class representative</th>
<th>No. of classes</th>
<th>Order of Centralizer in U</th>
<th>Class in G</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, 0, 0, 0)$</td>
<td>1</td>
<td>q^4</td>
<td>A_1</td>
</tr>
<tr>
<td>$(0, 0, \mu, 0), \mu \neq 0$</td>
<td>$q-1$</td>
<td>q^4</td>
<td>A_{21} if $\mu \in S$, A_{22} if $\mu \in S'$</td>
</tr>
<tr>
<td>$(0, 0, \beta, \beta \neq 0)$</td>
<td>$q-1$</td>
<td>q^3</td>
<td>A_{21}</td>
</tr>
<tr>
<td>$(\lambda, 0, 0, 0), \lambda \neq 0$</td>
<td>$q-1$</td>
<td>q^3</td>
<td>A_{21} if $\lambda \in S$, A_{22} if $\lambda \in S'$</td>
</tr>
<tr>
<td>$(\lambda, 0, \mu, 0), \lambda \neq 0, \mu \neq 0$</td>
<td>$(q-1)^2$</td>
<td>q^3</td>
<td>A_{31} if $-\lambda \mu \in S$, A_{32} if $-\lambda \mu \in S'$</td>
</tr>
<tr>
<td>$(0, \alpha, 0, 0), \alpha \neq 0$</td>
<td>$q-1$</td>
<td>q^2</td>
<td>A_{31}</td>
</tr>
<tr>
<td>$(\lambda, \alpha, 0, 0), \lambda \neq 0, \alpha \neq 0$</td>
<td>$(q-1)^2$</td>
<td>q^2</td>
<td>A_{41} if $\lambda \in S$, A_{42} if $\lambda \in S'$</td>
</tr>
</tbody>
</table>

We now consider certain characters of UZ and induce them to G. Now the “one-parameter subgroups” $\{(\lambda, 0, 0, 0)\}_{\lambda \in F}$, $\{(0, \alpha, 0, 0)\}_{\alpha \in F}$, etc. are all isomorphic to the additive group of F. By making use of these isomorphisms we see that there exist characters $\varepsilon : (\lambda, 0, 0, 0) \rightarrow e(\lambda), \quad \varepsilon' : (\lambda, 0, 0, 0) \rightarrow e'(\lambda)$ of the subgroup $\{(\lambda, 0, 0, 0)\}$ having the properties stated in Lemma 1.1. Similarly we define characters $\varepsilon, \varepsilon'$ of each of the three other subgroups.

(2.1) Consider the character of U defined by

$$\varepsilon : (\lambda, 0, \mu, \beta) \rightarrow 1, \quad (0, \alpha, 0, 0) \rightarrow e(\alpha).$$
This character can be extended to a linear character of UZ in two ways. We introduce these two characters of UZ to G, and denote the characters obtained by ψ_1 and ψ'_1. Thus the representation associated with $\psi_1 (\psi'_1)$ maps $-I$ on $I (-I)$. (The same convention will be followed in the rest of this section.)

(2.2) Take the characters
\[
(0, \alpha, \mu, \beta) \rightarrow 1, \quad (\lambda, 0, 0, 0) \rightarrow \varepsilon(\lambda); \quad (0, \alpha, \mu, \beta) \rightarrow 1, \quad (\lambda, 0, 0, 0) \rightarrow \varepsilon'(\lambda)
\]
and apply the same procedure as in (2.1). The two characters of G obtained from the first character will be denoted by ψ_{21}, ψ'_{21}, and those obtained from the second character will be denoted by ψ_{22}, ψ'_{22}. Let $\psi_2 = \psi_{21} + \psi_{22}$, $\psi'_2 = \psi'_{21} + \psi'_{22}$.

(2.3) Consider the characters
\[
(0, 0, \mu, \beta) \rightarrow 1, \quad (0, \alpha, 0, 0) \rightarrow \varepsilon(\alpha), \quad (\lambda, 0, 0, 0) \rightarrow \varepsilon(\lambda)
\]
and
\[
(0, 0, \mu, \beta) \rightarrow 1, \quad (0, \alpha, 0, 0) \rightarrow \varepsilon(\alpha), \quad (\lambda, 0, 0, 0) \rightarrow \varepsilon'(\lambda).
\]
Using the same procedure and convention as in (2.2), the four characters of G obtained will be denoted by ψ_{31}, ψ'_{31}, ψ_{32}, ψ'_{32}.

Let $\psi_3 = \psi_{31} + \psi_{32}$, $\psi'_3 = \psi'_{31} + \psi'_{32}$.

(2.4) Consider the character
\[
(\lambda, 0, \mu, 0) \rightarrow 1, \quad (0, 0, 0, \beta) \rightarrow \varepsilon(\beta),
\]
of the subgroup W. Extend this in two ways to WZ, and induce to G. We denote the two characters obtained by ψ_4, ψ'_4.

(2.5) Consider the character of W which is the sum of the two characters
\[
(0, 0, \beta) \rightarrow 1, \quad (\lambda, 0, 0, 0) \rightarrow \varepsilon(\lambda), \quad (0, 0, \mu, 0) \rightarrow \varepsilon(\mu)
\]
and
\[
(0, 0, \beta) \rightarrow 1, \quad (\lambda, 0, 0, 0) \rightarrow \varepsilon(\lambda), \quad (0, 0, \mu, 0) \rightarrow \varepsilon'(\mu).
\]
Again adopting the procedure of (2.4), we denote the two characters of G obtained by ψ_5 and ψ'_5.

We now give the values of the characters of G that we have constructed at the classes of G. We have omitted the characters ψ_1, \ldots, and also the values of ψ_1, \ldots at A'_1, \ldots, A'_{42}. At all other classes which are not mentioned the values of the characters are zero.

Each entry in the table is to be multiplied by an integer which depends on the column in which the entry is found. Thus, the value of ψ_i at A_1 is $\frac{1}{2}(q^2 - 1)(q^4 - 1)$, etc.

In computing these characters, we have made use of the identities (1.3), as well as the following facts.

(2.6) The elements of W which lie in A_{21} (A_{22}) are the elements of the form $(0, 0, \mu, 0)$ where $\mu \in S$ (S'), and the elements of the form $(\lambda, 0, \nu^2 \lambda, -\nu \lambda)$ where $\lambda \in S$ (S') and ν is any element of F.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
1968] THE FINITE SYMPLECTIC GROUP $Sp(4, q)$ 495

<table>
<thead>
<tr>
<th>Class</th>
<th>A_1</th>
<th>A_{21}</th>
<th>A_{22}</th>
<th>A_{31}</th>
<th>A_{32}</th>
<th>A_{41}</th>
<th>A_{42}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplying factor</td>
<td>$(q^3 - 1)$</td>
<td>$q^3 - 1$</td>
<td>$q^3 - 1$</td>
<td>$q - 1$</td>
<td>$q + 1$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ψ_1</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}(q^3 - 1)$</td>
<td>$\frac{1}{2}(q^3 - 1)$</td>
<td>$\frac{1}{2}(q^3 - 2q - 1)$</td>
<td>$\frac{1}{2}(q^3 - 1)^2$</td>
<td>$\frac{1}{2}(1 - q)$</td>
<td>$\frac{1}{2}(1 - q)$</td>
</tr>
<tr>
<td>ψ_{21}</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}(q^3 - 1)$</td>
<td>$\frac{1}{2}(q^3 - 1)$</td>
<td>$\frac{1}{2}(q^3 - 2q - 1)$</td>
<td>$\frac{1}{2}(q^3 - 1)^2$</td>
<td>$\frac{1}{2}(1 - q)$</td>
<td>$\frac{1}{2}(1 - q)$</td>
</tr>
<tr>
<td>ψ_{22}</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}(q^3 - 1)$</td>
<td>$\frac{1}{2}(q^3 - 1)$</td>
<td>$\frac{1}{2}(q^3 - 2q - 1)$</td>
<td>$\frac{1}{2}(q^3 - 1)^2$</td>
<td>$\frac{1}{2}(1 - q)$</td>
<td>$\frac{1}{2}(1 - q)$</td>
</tr>
<tr>
<td>$\psi_2 (\psi_{21} + \psi_{22})$</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>$2q^3 - q^2 - 1$</td>
<td>$1 - q$</td>
<td>$1 - q$</td>
<td>$1 - q$</td>
</tr>
<tr>
<td>ψ_{31}</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}(q^3 - 1)$</td>
<td>$\frac{1}{2}(q^3 - 1)$</td>
<td>$\frac{1}{2}(q^3 - 2q - 1)$</td>
<td>$\frac{1}{2}(q^3 - 1)^2$</td>
<td>$\frac{1}{2}(1 - q)$</td>
<td>$\frac{1}{2}(1 - q)$</td>
</tr>
<tr>
<td>ψ_{32}</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}(q^3 - 1)$</td>
<td>$\frac{1}{2}(q^3 - 1)$</td>
<td>$\frac{1}{2}(q^3 - 2q - 1)$</td>
<td>$\frac{1}{2}(q^3 - 1)^2$</td>
<td>$\frac{1}{2}(1 - q)$</td>
<td>$\frac{1}{2}(1 - q)$</td>
</tr>
<tr>
<td>$\psi_3 (\psi_{31} + \psi_{32})$</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>$1 - q$</td>
<td>$1 - q$</td>
<td>$1 - q$</td>
<td>$1 - q$</td>
</tr>
<tr>
<td>ψ_4</td>
<td>$\frac{1}{2}q$</td>
<td>$\frac{1}{2}q(q - 1)$</td>
<td>$\frac{1}{2}q(q - 1)$</td>
<td>$-q$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ψ_5</td>
<td>q</td>
<td>$-q$</td>
<td>$-q$</td>
<td>$-q$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(2.7) The elements of W which lie in A_{31} are the elements of the form $(0, 0, -2v\beta, \beta) \ (v, \beta \in F)$, and the elements of the form $(\lambda, 0, v^2\lambda + \mu, -v\lambda)$ where v is any element of F and $-\lambda\mu \in S$.

(2.8) The elements of W which lie in A_{32} are the elements of the form $(\lambda, 0, v^2\lambda + \mu, -v\lambda)$ where v is any element of F and $-\lambda\mu \in S'$.

3. Some subgroups of G. We first prove a lemma which will be used to show the existence of certain types of subgroups of G.

Lemma 3.1. Let \bar{G} be the algebraic group (over F) of all nonsingular 4×4 matrices X over a universal domain Ω containing F as a subfield, satisfying $XAX' = A$ where A is as in §1. If $a \in \bar{G}$, let $a^{(q)}$ be the element of \bar{G} obtained by raising every entry in the matrix a to its qth power. Let H be a subgroup of \bar{G}. Then there exists an element $y \in \bar{G}$ such that $y^{-1}Hy \subseteq G$, if and only if there exists an element $z \in \bar{G}$ such that $z^{-1}az = a^{(q)}$ for all $a \in H$.

Proof. Clearly G is the subgroup of \bar{G} consisting of all $a \in \bar{G}$ such that $a^{(q)} = a$. The lemma then follows from a theorem of Lang [3] which asserts that for any $z \in \bar{G}$ there exists a $y \in \bar{G}$ such that $z = yxy^{-q}$.

We now consider the following subgroups of G.

(3.2) Consider the elements

$$a = \begin{pmatrix} \zeta & \zeta^{-1} \\ \zeta^q & \zeta^{-q} \end{pmatrix}, \quad b = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$$
in \tilde{G}. Then b transforms every element c of $\{a, b\}$ to $c^{(q)}$, and hence, by Lemma 3.1, G contains a subgroup M_1 conjugate to $\{a, b\}$ in \tilde{G}. Let $M_1 = \{a_1, x_1\}$, where $a_1^{q^2 + 1} = x_1^q = 1$, $x_1^{-1} a_1 x_1 = a_1^q$. Let $H_1 = \{a_1\}$.

We give below the conjugacy classes of M_1 and the classes of G containing them. Sometimes the class of G to which an element belongs depends on q. In these cases we have just indicated the characteristic polynomial of the element. The elements in question are always p-regular.

<table>
<thead>
<tr>
<th>$1, a_1^{(q^2 + 1)}$</th>
<th>$1, 1$</th>
<th>$4(q^2 + 1)$</th>
<th>A_1, A_1^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1^i</td>
<td>$1(q^2 - 1)$, $i \in R_1$</td>
<td>$q^2 + 1$</td>
<td>$B_1(i)$</td>
</tr>
<tr>
<td>$x_1, x_1^2, a_1^2 x_1, a_1^2 x_1^2$</td>
<td>$1, 1, 1, 1$</td>
<td>8</td>
<td>$(x^4 + 1)$</td>
</tr>
<tr>
<td>$x_1^2, a_1 x_1$</td>
<td>$1, 1$</td>
<td>8</td>
<td>$(x^2 + 1)^2$</td>
</tr>
</tbody>
</table>

In the tables of conjugacy classes of subgroups in this section the columns contain, from left to right, (i) class representative, (ii) number of classes, (iii) order of centralizer in the subgroup, and (iv) class in G. In the following, the use of Lemma 3.1 to prove the existence of subgroups will not be explicitly mentioned unless the details are not straightforward.

(3.3) Let M_2 be a subgroup of G which is conjugate in \tilde{G} to the subgroup of \tilde{G} generated by

$$\left(\begin{array}{ccc}
\theta & -1 & 1 \\
\theta^{-q} & -1 & -1 \\
\theta^{-q} & 1 & 1
\end{array}\right), \quad \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \text{and} \quad \left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right).$$

Then $M_2 = \{a_2, x_2, y_2\}$, with

$$a_2^{q^2 - 1} = x_2^q = y_2^q = [x_2, y_2](2) = 1, \quad x_2^{-1} a_2 x_2 = a_2^q, \quad y_2^{-1} a_2 y_2 = a_2^{-q}.$$

Let $H_2 = \{a_2\}$. The conjugacy classes of M_2 are given in the next table.

(3.4) Let $H_3 = \{a_3, b_3\}$, $M_3 = \{a_3, b_3, x_3, y_3, z_3\}$, where

$$a_3 = \left(\begin{array}{ccc}
\gamma & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad b_3 = \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \gamma & 0 \\
0 & 0 & \gamma^{-1}
\end{array}\right), \quad x_3 = \left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right),$$

$$y_3 = \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad z_3 = \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right).$$

(3) If $a, b \in G$, $[a, b] = a^{-1} b^{-1} a b$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Then we have the relations

\[a_3^{-1} = b_3^{-1} = [a_3, b_3] = x_3^4 = y_3^4 = z_3^4 = [y_3, z_3] = [a_3, z_3] = [b_3, y_3] = 1, \]

\[x_3^{-1} y_3 x_3 = z_3, \quad x_3^{-1} a_3 x_3 = b_3, \quad y_3^{-1} a_3 y_3 = a_3^{-1}, \quad z_3^{-1} b_3 z_3 = b_3^{-1}. \]

The conjugacy classes of \(M_3 \) are given below.

<table>
<thead>
<tr>
<th>1, ((a_3 b_3)^{q-13/2})</th>
<th>1, 1</th>
<th>8(q-1)^2</th>
<th>(A_1, A'_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_3^{-1/2})</td>
<td>1</td>
<td>4(q-1)^2</td>
<td>(D_1)</td>
</tr>
<tr>
<td>(a_3, a_3 b_3^{-13/2})</td>
<td>(1/4(q-3), 1/4(q-3), i \in T_1)</td>
<td>2(q-1)^2</td>
<td>(C_3(i), C_3(i'))</td>
</tr>
<tr>
<td>((a_3 b_3)^4)</td>
<td>(1/4(q-3), i \in T_1)</td>
<td>2(q-1)^2</td>
<td>(B_6(i))</td>
</tr>
<tr>
<td>(a_3 b_3)</td>
<td>((q-3)(q-5)/8, i, j \in T_1, i \neq j)</td>
<td>(q-1)^2</td>
<td>(B_6(i, j))</td>
</tr>
<tr>
<td>(y_3, a_3 y_3)</td>
<td>1, 1</td>
<td>8(q-1)</td>
<td>((x^2 + 1)(x-1)^2)</td>
</tr>
<tr>
<td>((a_3 b_3)^{q-13/2} y_3, (a_3 b_3)^{q-13/2} a_3 y_3)</td>
<td>1, 1</td>
<td>8(q-1)</td>
<td>((x^2 + 1)(x+1)^2)</td>
</tr>
<tr>
<td>(a_3 z_3, a_3 b_3 z_3)</td>
<td>(1/4(q-3), 1/4(q-3), i \in T_1)</td>
<td>4(q-1)</td>
<td>((x-\gamma)(x-\gamma^{-1})) ((x^2 + 1))</td>
</tr>
<tr>
<td>(y_3 z_3, a_3 y_3 z_3)</td>
<td>1, 1</td>
<td>16</td>
<td>((x^2 + 1)^2)</td>
</tr>
<tr>
<td>(x_3)</td>
<td>1</td>
<td>4(q-1)</td>
<td>((x^2 + 1)^2)</td>
</tr>
<tr>
<td>(a_3^{-1/2} x_3)</td>
<td>1</td>
<td>4(q-1)</td>
<td>(D_1)</td>
</tr>
<tr>
<td>(a_3 x_3)</td>
<td>(1/4(q-3), i \in T_1)</td>
<td>2(q-1)</td>
<td>((x^2 + \gamma)(x^2 + \gamma^{-1}))</td>
</tr>
<tr>
<td>(x_3 y_3, a_3 x_3 y_3)</td>
<td>1, 1</td>
<td>8</td>
<td>((x^4 + 1))</td>
</tr>
</tbody>
</table>

(3.5) Let \(M_4 \) be a subgroup of \(G \) which is conjugate in \(\mathcal{G} \) to the subgroup of \(\mathcal{G} \) generated by
Then $M_4 = \{a_4, b_4, x_4, y_4, z_4\}$, where

\[
a_4^{-1} b_4^{-1} = [a_4, b_4] = x_4^2 = y_4^2 = z_4^2 = [y_4, z_4] = [a_4, z_4] = [y_4, b_4] = 1,
\]

\[
x_4^{-1} y_4 x_4 = z_4, \quad x_4^{-1} a_4 x_4 = b_4, \quad y_4^{-1} a_4 y_4 = a_4^{-1}, \quad z_4^{-1} b_4 z_4 = b_4^{-1}.
\]

Let $H_4 = \{a_4, b_4\}$. The conjugacy classes of M_4 are given below.

<table>
<thead>
<tr>
<th>Class Description</th>
<th>Type</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1, (a_4b_4)^{q-1/2}$</td>
<td>A_1, A_1'</td>
<td>$8(q+1)^2$</td>
</tr>
<tr>
<td>a_4^q</td>
<td>D_1</td>
<td>$4(q+1)^2$</td>
</tr>
<tr>
<td>$a_4 b_4^q$</td>
<td>C_i, C_i'</td>
<td>$2(q+1)^2$</td>
</tr>
<tr>
<td>$a_4 b_4^q$</td>
<td>$B_4(i)$</td>
<td>$(q+1)^2$</td>
</tr>
<tr>
<td>$(a_4b_4)^{q+1} y_4, (a_4b_4)^{(q+1)/2} a_4 y_4$</td>
<td></td>
<td>$8(q+1)$</td>
</tr>
<tr>
<td>$y_4, a_4 y_4$</td>
<td></td>
<td>$8(q+1)$</td>
</tr>
<tr>
<td>$a_4 z_4, a_4 b_4 z_4$</td>
<td></td>
<td>$4(q+1)$</td>
</tr>
<tr>
<td>$y_4 z_4, y_4 a_4 z_4$</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>$x_4, a_4 x_4 z_4$</td>
<td></td>
<td>$4(q+1)$</td>
</tr>
<tr>
<td>$a_4^{q+1/2} x_4$</td>
<td></td>
<td>$4(q+1)$</td>
</tr>
<tr>
<td>$a_4 x_4$</td>
<td></td>
<td>$(x^2+1)^3$</td>
</tr>
<tr>
<td>$x_4 y_4, a_4 x_4 y_4$</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

(3.6) Let M_6 be a subgroup of G which is conjugate in G to the subgroup generated by

\[
\begin{pmatrix}
 \eta & \eta^{-1} \\
 1 & 1 \\
\end{pmatrix},
\quad
\begin{pmatrix}
 1 & 1 \\
 \gamma & \gamma^{-1} \\
\end{pmatrix},
\quad
\begin{pmatrix}
 1 & 1 \\
 -1 & 1 \\
\end{pmatrix}, \text{ and }
\begin{pmatrix}
 1 & 1 \\
 -1 & 1 \\
\end{pmatrix}.
\]
Then $M_5 = \{a_5, b_5, y_5, z_5\}$, where $a_5^{-1} = b_5^{-1} = y_5^{-1} = z_5^{-1} = [a_5, b_5] = [y_5, z_5] = [a_5, z_5] = [b_5, y_5] = 1$, $y_5^{-1}a_5y_5 = a_5^{-1}$, $z_5^{-1}b_5z_5 = b_5^{-1}$. Let $H_5 = \{a_5, b_5\}$.

The conjugacy classes of M_5 are given below.

<table>
<thead>
<tr>
<th>$1, a_5^{g+1/2}b_5^{g-1/2}$</th>
<th>$1, z$</th>
<th>$4(q^2-1)$</th>
<th>A_1, A_1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_5^{g+1/2}, b_5^{g-1/2}$</td>
<td>$1, 1$</td>
<td>$4(q^2-1)$</td>
<td>D_1</td>
</tr>
<tr>
<td>$a_5, b_5b_5^{g-1/2}$</td>
<td>$\frac{1}{2}(q-1), \frac{1}{2}(q-1), i \in T_2$</td>
<td>$2(q^2-1)$</td>
<td>$C_1(i), C_1'(i)$</td>
</tr>
<tr>
<td>$b_5b_5b_5^{g+1/2}$</td>
<td>$\frac{1}{2}(q-3), \frac{1}{2}(q-3), i \in T_1$</td>
<td>$2(q^2-1)$</td>
<td>$C_2(i), C_2'(i)$</td>
</tr>
<tr>
<td>a_5b_5</td>
<td>$\frac{1}{2}(q-1)(q-3), i \in T_2,$ $j \in T_1$</td>
<td>q^2-1</td>
<td>$B_5(i, j)$</td>
</tr>
<tr>
<td>y_5, a_5y_5</td>
<td>$1, 1$</td>
<td>$8(q-1)$</td>
<td>$(x^2+1)(x-1)^2$</td>
</tr>
<tr>
<td>$y_5b_5^{g-1/2}, a_5y_5b_5^{g-1/2}$</td>
<td>$1, 1$</td>
<td>$8(q-1)$</td>
<td>$(x^2+1)(x+1)^2$</td>
</tr>
<tr>
<td>z_5, b_5z_5</td>
<td>$1, 1$</td>
<td>$8(q+1)$</td>
<td>$(x^2+1)(x-1)^2$</td>
</tr>
<tr>
<td>$z_5a_5^{g+1/2}, b_5z_5a_5^{g-1/2}$</td>
<td>$1, 1$</td>
<td>$8(q+1)$</td>
<td>$(x^2+1)(x+1)^2$</td>
</tr>
<tr>
<td>$a_5z_5, a_5b_5z_5$</td>
<td>$\frac{1}{2}(q-1), \frac{1}{2}(q-1), i \in T_2$</td>
<td>$4(q-1)$</td>
<td>$(x-\eta)(x-\eta^{-1})$ $((x^2+1))$</td>
</tr>
<tr>
<td>$b_5y_5, b_5a_5y_5$</td>
<td>$\frac{1}{2}(q-3), \frac{1}{2}(q-3), i \in T_1$</td>
<td>$4(q-1)$</td>
<td>$(x-\eta')(x-\eta'^{-1})$ $((x^2+1))$</td>
</tr>
<tr>
<td>$y_5z_5, y_5b_5z_5, a_5y_5z_5, a_5b_5y_5z_5$</td>
<td>$1, 1, 1, 1$</td>
<td>16</td>
<td>$(x^2+1)^2$</td>
</tr>
</tbody>
</table>

(3.7) Let K be the subgroup of G consisting of all elements of the form

$$ \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} $$

where A, B are 2×2 matrices. Then K is of order $q^2(q^2-1)^2$, and $K \cong S_p(2, q) \times S_p(2, q) \cong SL(2, q) \times SL(2, q)$.

(3.8) Let K_1 be the subgroup of G consisting of all elements of the form

$$ \begin{pmatrix} \gamma^t & \beta \gamma^t \\ \gamma^{-t} & \beta \gamma^{-t} \\ \gamma^{-t} & \gamma^t \end{pmatrix} \quad (\beta \in F). $$

Then $|K_1| = q(q-1)$, and K_1 is the direct product of a cyclic group of order $q-1$ and an elementary abelian group of order q. Let

$$ u = \begin{pmatrix} \gamma \\ \gamma^{-1} \\ \gamma^{-1} \end{pmatrix}, \quad b_\beta = \begin{pmatrix} 1 & \cdots & \beta \\ \cdots & 1 & \cdots \\ \beta & 1 \end{pmatrix}, \quad v = \begin{pmatrix} \cdots & 1 \\ \cdots & 1 \\ 1 & \cdots \end{pmatrix}. $$
Let $K'_1 = \{K_1, v\}$. Then v centralizes each b_β and transforms u into u^{-1}. We now give the classes of K'_1.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
<th>Characteristic</th>
<th>Class</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1, u^{(a-1)}$</td>
<td>$q-1, q-1, 0 \neq \beta \in F$</td>
<td>$2q(q-1)$</td>
<td>A_3, A'_3</td>
<td></td>
</tr>
<tr>
<td>$b_\beta, u^{(a-1)}b_\beta$</td>
<td>$\frac{1}{2}(q-3), i \in T_1, \beta \neq 0$</td>
<td>$q(q-1)$</td>
<td>$B_8(i)$</td>
<td></td>
</tr>
<tr>
<td>u^i</td>
<td>$\frac{1}{2}(q-3)(q-1), i \in T_1, \beta \neq 0$</td>
<td>$q(q-1)$</td>
<td>$B_8(i)$</td>
<td></td>
</tr>
<tr>
<td>v, uv</td>
<td>$1, 1$</td>
<td>$4q, 4q$</td>
<td>D_1</td>
<td></td>
</tr>
<tr>
<td>$b_\beta v, b_\beta uv$</td>
<td>$q-1, q-1, \beta \neq 0$</td>
<td>$4q, 4q$</td>
<td>See remark below</td>
<td></td>
</tr>
</tbody>
</table>

Remark. $b_\beta uv, b_\beta v$ are conjugate in G to

$$
\begin{pmatrix}
1 & 2\beta y^{-1} \\
-1 & 2\beta y^{-1}
\end{pmatrix}
$$

and

$$
\begin{pmatrix}
1 & 2\beta \\
-1 & 2\beta
\end{pmatrix}
$$

respectively.

Hence, of the $q-1$ elements $b_\beta u$, $\frac{1}{2}(q-1)$ elements belong to D_{31} and $\frac{1}{2}(q-1)$ to D_{34} if $q \equiv 1 \pmod{4}$. Similarly, $\frac{1}{2}(q-1)$ of the elements $b_\beta uv$ belong to D_{31} and $\frac{1}{2}(q-1)$ to D_{34} if $q \equiv 1 \pmod{4}$. If $q \equiv -1 \pmod{4}$, D_{31} and D_{34} are to be replaced by D_{32} and D_{33} in the above statements.

(3.9) Let K_2 be the subgroup of G of all elements of the form

$$
\begin{pmatrix}
\eta^i & \delta \beta \eta^i \\
\eta^{-i} & \eta^{-i} \delta \beta \eta^{-i} \\
\eta^i &
\end{pmatrix}
$$

($\beta \in F$, δ an element of Ω such that $\delta^2 = \gamma$).

Now $\delta^2 = -\delta$. Let $\tilde{K}_2 = \{\tilde{K}_2, v\}$ where

$$
v = \begin{pmatrix}
\ddots & \ddots & 1 \\
\ddots & \ddots & 1 \\
1 & \ddots & \\
\ddots & 1 & \\
1 & \ddots & \\
\ddots & 1 & \\
\ddots & 1 & \\
\ddots & \ddots & \ddots \\
\end{pmatrix}
$$

Then the element

$$
\begin{pmatrix}
\ddots & \ddots & 1 \\
\ddots & \ddots & 1 \\
1 & \ddots & \\
\ddots & 1 & \\
1 & \ddots & \\
\ddots & 1 & \\
\ddots & \ddots & \ddots \\
\end{pmatrix}
$$
transforms every element c of K'_2 into $c^{(q)}$. Hence there exist $z \in G$ such that $z^{-1}K'_2z = K'_2 \equiv G$. Let $z^{-1}K'_2z = K_2$.

$$
\begin{pmatrix}
\eta & \eta^{-1} \\
\eta^{-1} & \eta
\end{pmatrix}
\begin{pmatrix}
z
\end{pmatrix}
= w,
$$

$$
\begin{pmatrix}
1 & \delta \beta \\
\delta \beta & 1
\end{pmatrix}
\begin{pmatrix}
z
\end{pmatrix}
= d_8, \quad z^{-1}y = y.
$$

The conjugacy classes of K'_2 are given below.

<table>
<thead>
<tr>
<th>$1, w^{(q+1)/2}$</th>
<th>$1, 1$</th>
<th>$2q(q+1)$</th>
<th>A_3, A'_3</th>
<th>A_{32}, A'_{32}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_s, w^{q+1/2}d_s$</td>
<td>$q - 1, q - 1, \beta \neq 0$</td>
<td>$2q(q+1)$</td>
<td>A_{32}, A'_{32}</td>
<td>$B_4(i)$</td>
</tr>
<tr>
<td>w^i</td>
<td>$\frac{1}{2}(q - 1), i \in T_2$</td>
<td>$q(q+1)$</td>
<td>$B_4(i)$</td>
<td>D_1</td>
</tr>
<tr>
<td>$w^j d_g$</td>
<td>$\frac{1}{2}(q - 1)^2, i \in T_2, \beta \neq 0$</td>
<td>$q(q+1)$</td>
<td>$B_4(i)$</td>
<td>D_1</td>
</tr>
<tr>
<td>w, yw</td>
<td>$1, 1$</td>
<td>$4q$</td>
<td>D_1</td>
<td>$4q$</td>
</tr>
<tr>
<td>$d_sw, d_s yw$</td>
<td>$q - 1, q - 1, \beta \neq 0$</td>
<td>$4q$</td>
<td>D_1</td>
<td>See remark below</td>
</tr>
</tbody>
</table>

Remark. Here $\frac{1}{2}(q - 1)$ of the elements d_sw belong to D_{32} and $\frac{1}{2}(q - 1)$ to D_{33} if $q \equiv 1 \mod 4$. Similarly $\frac{1}{2}(q - 1)$ of the elements $d_s yw$ belong to D_{32} and $\frac{1}{2}(q - 1)$ to D_{33} if $q \equiv 1 \mod 4$. If $q \equiv -1 \mod 4$, replace D_{32} and D_{33} by D_{31} and D_{34} in the above statements.

(3.10) Let L_1 be the subgroup of G consisting of all elements of the form

$$
\begin{pmatrix}
\gamma^i & \cdots & \cdots \\
\cdots & \gamma^{-i} & \cdots \\
\cdots & \pm 1 & \beta \\
\cdots & \cdots & \pm 1
\end{pmatrix}
$$

$(\beta \in F)$. Then $|L_1| = 2q(q - 1)$. Let

$$
u_1 = \begin{pmatrix}
1 & \cdots & \cdots \\
-1 & \cdots & \cdots \\
\cdots & 1 & \cdots \\
\cdots & \cdots & 1
\end{pmatrix}, \quad \text{and} \quad L'_1 = \{L_1, u_1\}.
We put
\[
g_1 = \begin{pmatrix}
\gamma & \cdot & \cdot \\
\cdot & \gamma^{-1} & \cdot \\
\cdot & \cdot & 1 \\
\cdot & \cdot & \cdot
\end{pmatrix}, \quad h_\beta = \begin{pmatrix}
1 & \cdot & \cdot \\
\cdot & 1 & \cdot \\
\cdot & \cdot & 1 & \beta \\
\cdot & \cdot & \cdot & 1
\end{pmatrix}, \quad c_1 = \begin{pmatrix}
1 & \cdot \\
\cdot & -1 \\
\cdot & \cdot \\
\cdot & \cdot
\end{pmatrix}.
\]

The conjugacy classes of \(L'_1 \) are easily written down and they will be omitted here.

(3.11) Let \(L_2 \) be the subgroup of \(G \) generated by all elements of the form
\[
\begin{pmatrix}
\eta \\
\eta^{-1} \\
\pm 1 \\
\beta
\end{pmatrix} \quad (\beta \in F)
\]
and
\[
\begin{pmatrix}
1 \\
-1 \\
1 \\
1
\end{pmatrix}.
\]

Then \(z^{-1} L_2 z = L'_2 \subseteq G \), for some \(z \in G \). Let
\[
g_2 = z^{-1} \begin{pmatrix}
\eta \\
\eta^{-1} \\
1 \\
1
\end{pmatrix} z, \quad k_\beta = z^{-1} \begin{pmatrix}
1 \\
1 \\
1 \\
1
\end{pmatrix} z,
\]
\[
c_2 = z^{-1} \begin{pmatrix}
1 \\
1 \\
-1 \\
-1
\end{pmatrix} z, \quad \text{and} \quad u_2 = z^{-1} \begin{pmatrix}
1 \\
-1 \\
1 \\
1
\end{pmatrix} z.
\]

Let \(L_2 = \{ g_2, c_2, k_\beta (\beta \in F) \} \). Again, the conjugacy classes of \(L'_2 \) will be omitted. We note that, in fact, \(z \) can be chosen such that \(L'_2 \) is a subgroup of the subgroup \(K \) of (3.7).

Certain characters of subgroups of \(G \).

(3.12) Consider the subgroups \(K_1, K'_1 \) of (3.8), and the character \(u \rightarrow \gamma^j \), \(b_\beta \rightarrow \epsilon(\beta) \) of \(K_1 \), where \(j \) is any integer.

[Here we make use of the isomorphism \(\beta \rightarrow b_\beta \) between the additive group of \(F \) and the subgroup of \(K_1 \) consisting of all the \(b_\beta \).]

Induce this character to \(G \) and let \(\rho(j) \) be the character of \(G \) obtained in this way. Now consider the characters
\[
\alpha_{11}: u \rightarrow 1, \quad b_\beta \rightarrow \epsilon(\beta), \quad v \rightarrow -1,
\]
\[
\alpha_{12}: u \rightarrow 1, \quad b_\beta \rightarrow \epsilon(\beta), \quad v \rightarrow 1,
\]
of \(K'_1 \), and induce the characters \(\alpha_{11}, \alpha_{12} \) to \(G \).

(3.13) Similarly we construct a character \(\sigma(j) \) of \(G \) which is the induced character
of the following character of K°: $w \mapsto \eta^j$, $d_\beta \mapsto \epsilon(\beta)$ (j any integer). We also consider the following characters of K°_2, and induce them to G.

\begin{align*}
\alpha_{11}: w &\mapsto 1, \quad d_\beta \mapsto \epsilon(\beta), \quad y \mapsto -1, \\
\alpha_{22}: w &\mapsto 1, \quad d_\beta \mapsto \epsilon(\beta), \quad y \mapsto 1.
\end{align*}

The values of $\rho(j)$, $\sigma(j)$, α_{11}^0, α_{12}^0, α_{21}^0, α_{22}^0 at the classes of G are given below. At classes not mentioned the values are zero. Also, where there is no entry in the table the value is zero. (We will stick to this convention throughout this paper.)

<table>
<thead>
<tr>
<th>$\rho(j)$</th>
<th>A_1</th>
<th>A_4</th>
<th>A_{11}</th>
<th>A_{12}</th>
<th>A_{21}</th>
<th>A_{22}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q^3(q+1)(q^4-1)$</td>
<td>$-2q^2$</td>
<td>$-q^2$</td>
<td>$-2q^2$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
</tr>
<tr>
<td>$q^4(q-1)(q^4-1)$</td>
<td>$(-1)^j q^3(q-1)(q^4-1)$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
</tr>
<tr>
<td>$\frac{1}{4}q^3(q+1)(q^4-1)$</td>
<td>$\frac{1}{4}q^3(q+1)(q^4-1)$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
</tr>
<tr>
<td>$\frac{1}{4}q^3(q+1)(q^4-1)$</td>
<td>$\frac{1}{4}q^3(q+1)(q^4-1)$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
</tr>
<tr>
<td>$\frac{1}{4}q^3(q-1)(q^4-1)$</td>
<td>$\frac{1}{4}q^3(q-1)(q^4-1)$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
</tr>
<tr>
<td>$\frac{1}{4}q^3(q-1)(q^4-1)$</td>
<td>$\frac{1}{4}q^3(q-1)(q^4-1)$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
<td>$-q^2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\sigma(j)$</th>
<th>$B_1(i)$</th>
<th>$B_1(i)$</th>
<th>$B_3(i)$</th>
<th>$B_3(i)$</th>
<th>D_1</th>
<th>D_{31}</th>
<th>D_{32}</th>
<th>D_{33}</th>
<th>D_{34}</th>
</tr>
</thead>
<tbody>
<tr>
<td>q^2-1</td>
<td>$\frac{q^2-1}{(\eta^i+\eta^{-1})}$</td>
<td>$-\frac{q^2-1}{(\eta^i+\eta^{-1})}$</td>
<td>q</td>
<td>q</td>
<td>$-q$</td>
<td>$-q$</td>
<td>q</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>q^2-1</td>
<td>-1</td>
<td>-1</td>
<td>q</td>
<td>q</td>
<td>$-q$</td>
<td>$-q$</td>
<td>q</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>q^2-1</td>
<td>-1</td>
<td>-1</td>
<td>q</td>
<td>q</td>
<td>$-q$</td>
<td>$-q$</td>
<td>q</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>q^2-1</td>
<td>-1</td>
<td>-1</td>
<td>q</td>
<td>q</td>
<td>$-q$</td>
<td>$-q$</td>
<td>q</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>q^2-1</td>
<td>-1</td>
<td>-1</td>
<td>q</td>
<td>q</td>
<td>$-q$</td>
<td>$-q$</td>
<td>q</td>
<td>q</td>
<td></td>
</tr>
</tbody>
</table>

Remark. In reading the values at D_{31} to D_{34}, the upper entry is to be taken if $q \equiv 1 \pmod{4}$ and the lower entry if $q \equiv -1 \pmod{4}$.

(3.14) We now introduce certain characters of K. Since $K \cong SL(2, q) \times SL(2, q)$, any two characters ρ and σ of $SL(2, q)$ give rise to a character $\rho \times \sigma$ of K which has as its value at $A = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$.
the value of ρ at A multiplied by the value of σ at B. Now there exist families of characters $\lambda(i)$, $\lambda'(j)$, $(i, j$ are any integers) of degree $1 + q$, $1 - q$ respectively of $SL(2, q)$. (See e.g. [2]). Hence we have characters $\lambda(i) \times \lambda'(j)$, $\lambda(i) \times \lambda(j)$, $\lambda'(i) \times \lambda'(j)$ of K.

We also give below four characters μ_i $(i = 1, 2, 3, 4)$ of $SL(2, q)$ which will be used to construct characters of K (see [5, p. 103]). Let $t = \frac{1}{4}(q - 1)$.

<table>
<thead>
<tr>
<th>$(1\quad 1)$</th>
<th>$(-1\quad -1)$</th>
<th>$\left(\begin{array}{ll} 1 & \gamma' \ \gamma' & 1 \end{array}\right)$, $i \in T_1$</th>
<th>$\left(\begin{array}{ll} 1 & \gamma' \ \gamma' & 1 \end{array}\right)$, $i \in T_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda(j)$</td>
<td>$\lambda'(j)$</td>
<td>$(1 + q)$</td>
<td>$(-1)'(1 + q)$</td>
</tr>
<tr>
<td>$\lambda(j)$</td>
<td>$\lambda'(j)$</td>
<td>$(-1)(1 - q)$</td>
<td>$(-1)'(1 - q)$</td>
</tr>
<tr>
<td>μ_1</td>
<td>μ_2</td>
<td>$\frac{1}{2}(1 + q)$</td>
<td>$(-1)'\frac{1}{2}(1 + q)$</td>
</tr>
<tr>
<td>μ_3</td>
<td>μ_4</td>
<td>$\frac{1}{2}(1 - q)$</td>
<td>$(-1)'\frac{1}{2}(1 - q)$</td>
</tr>
</tbody>
</table>

(3.15) We now consider the subgroups L'_1, L'_2 of (3.10) and (3.11). Let δ_i $(i = 1, 2, 3, 4)$ be the characters of L'_1 given by

$$
\begin{align*}
\delta_1 & : g_1 \to -1, \quad c_1 \to (-1)', \quad u_1 \to 1, \quad h_\beta \to \epsilon(\beta), \\
\delta_2 & : g_1 \to -1, \quad c_1 \to (-1)', \quad u_1 \to 1, \quad h_\beta \to \epsilon'(\beta), \\
\delta_3 & : g_1 \to -1, \quad c_1 \to (-1)'^t, \quad u_1 \to 1, \quad h_\beta \to \epsilon(\beta), \\
\delta_4 & : g_1 \to -1, \quad c_1 \to (-1)'^{t+1}, \quad u_1 \to 1, \quad h_\beta \to \epsilon'(\beta).
\end{align*}
$$

Let δ'_i $(i = 1, 2, 3, 4)$ be the characters of L'_2 obtained by replacing g_1 by g_2, c_1 by c_2, u_1 by u_2, and h_β by k_β in the definitions of δ_i $(i = 1, 2, 3, 4)$.

We give below the induced character δ'_1. The others can be obtained in a similar way.

<table>
<thead>
<tr>
<th>A_1, A'_1</th>
<th>A_{21}, A'_{21}</th>
<th>A_{22}, A'_{22}</th>
<th>$C_3(i)$</th>
<th>$C_3(i)$</th>
<th>$C_{41}(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{4}q^2(q + 1)(q^4 - 1)$</td>
<td>$\frac{1}{4}q^2(q + 1)\varepsilon$</td>
<td>$\frac{1}{4}q^2(q + 1)\varepsilon'$</td>
<td>$(-1)'\frac{1}{2}(q^2 - 1)$</td>
<td>$(-1)'^t\frac{1}{2}(q^2 - 1)$</td>
<td>$(-1)'\varepsilon'$</td>
</tr>
</tbody>
</table>
We will also need characters δ_5, δ_6 of degree 2 of L_1', L_2 respectively defined as follows.

δ_5 is the sum of the characters

$$g_1 \rightarrow 1, \quad u_1 \rightarrow 1, \quad c_1 \rightarrow 1, \quad h_\beta \rightarrow e^{\beta};$$

$$g_1 \rightarrow 1, \quad u_1 \rightarrow 1, \quad c_1 \rightarrow 1, \quad h_\beta \rightarrow e^{\beta}\sigma(\beta)$$

δ_6 is the character of L_2' obtained by replacing g_1 by g_2, u_1 by u_2, c_1 by c_2 and h_β by k_β in the above definition.

4. Families of characters of G corresponding to the families of classes $B_1(i)$ to $B_6(i)$.

(4.1) Consider the subgroups H_1, H_2 defined in (3.2) and (3.3), and the linear characters $\beta_1(j), \beta_2(j)$ of H_1, H_2 respectively given by

$$\beta_1(j) : a_1 \rightarrow \xi^j, \quad \beta_2(j) : a_2 \rightarrow \theta^j$$

(j any integer).

We define characters $\chi_1(j), \chi_2(j)$ (for any integer j) of G by

$$\chi_1(j) = \beta_1^2(j) - \psi_1 - \psi_2 - \frac{1}{2}(3q-5)\psi_3 - \psi_4 - (q-2)\psi_5, \quad \text{if } j \text{ is even},$$

$$= \beta_1^2(j) - \psi_1 - \psi_2 - \frac{1}{2}(3q-5)\psi_3 - \psi_4 - (q-2)\psi_5, \quad \text{if } j \text{ is odd}.$$

$$\chi_2(j) = \beta_2^2(j) - \rho(j) - \sigma(j) + \psi_1 + \psi_2 + \frac{1}{2}(3q-5)\psi_3 + \psi_4 + (q-2)\psi_5, \quad \text{if } j \text{ is even},$$

$$= \beta_2^2(j) - \rho(j) - \sigma(j) + \psi_1 + \psi_2 + \frac{1}{2}(3q-5)\psi_3 + \psi_4 + (q-2)\psi_5, \quad \text{if } j \text{ is odd}.$$
These three families of characters are of degrees \((1 + q)^2(q^2 + 1), (1 - q)^2(1 + q^2)\) and \(1 - q^4\) respectively. The values of these characters at the classes of \(G\) are given in §8. We note that \(\chi_i(j) = \chi_i(k)\) if \(j \equiv k \pmod{q^2 + 1}\), etc.

In order to consider the irreducibility of these characters, we prove the following two lemmas.

Lemma 4.3. Consider the \(5 \times 5\) matrix

\[
(R_{ab}) = \begin{pmatrix}
(1-q^2)^2 & 1-q^4 & (1+q)^2(1+q^2) & (1-q)^2(1+q^2) & 1-q^4 \\
1-q^2 & 1-q^2 & (1+q)^2 & (1-q)^2 & 1+q^2 \\
1+q & 1-q & 1+q & 1-3q & 1+q \\
1-q & 1+q & 1+3q & 1-q & 1-q \\
1 & 1 & 1 & 1 & 1
\end{pmatrix}
\]

Between the columns of this matrix we have the relations

\[
\sum_a \frac{1}{s_a} R_{ab} R_{ay} = \delta_{by} \frac{z_b}{t_b},
\]

where \(s_1 = q^4(q^2 - 1)(q^4 - 1), \ s_2 = q^4(q^2 - 1), \ s_3 = 2q^6(q - 1), \ s_4 = 2q^6(q + 1), \ s_5 = q^2, \ z_1 = z_2 = z_5 = 4, \ z_3 = z_4 = 8, \ t_1 = q^2 + 1, \ t_2 = q^2 - 1, \ t_3 = (q - 1)^2, \ t_4 = (q + 1)^2, \ t_5 = q^2 - 1.\)

Lemma 4.4. Consider the \(2 \times 2\) matrix

\[
(K_{ab}) = \begin{pmatrix}
1+q & 1-q \\
1 & 1
\end{pmatrix}
\]

Between the columns of this matrix we have the relations

\[
\sum_a \frac{1}{a_a} K_{ab} K_{ay} = \delta_{by} \frac{2}{b_y},
\]

where \(a_1 = q(q^2 - 1), \ a_2 = q, \ b_1 = q - 1, \ b_2 = q + 1.\) (Compare [2, p. 431].)

Since the proofs of these lemmas are a routine verification of their statements, they will be omitted. The meaning of these lemmas will become clear when we prove the next lemma.

Consider the linear characters

\[
a_1 \rightarrow \xi_1; \quad a_2 \rightarrow \xi_1; \quad a_3 \rightarrow \xi^k; \quad b_3 \rightarrow \xi^l; \\
a_4 \rightarrow \eta^k; \quad b_4 \rightarrow \eta^l; \quad a_5 \rightarrow \eta^k; \quad b_5 \rightarrow \eta^l;
\]

of \(H_1, \ H_2, \ H_3, \ H_4, \ H_5\) respectively (\(j, k, l\) are any integers). Let \(\phi_1(j), \ \phi_2(j), \ \phi_3(k, l), \ \phi_4(k, l), \ \phi_5(k, l)\) be the characters of \(M_1, \ M_2, \ M_3, \ M_4, \ M_5\) respectively induced from these characters.

Lemma 4.5. The scalar product of two characters belonging to distinct families
\(\{ \chi_1(j) \}, \ldots \) is zero. For characters belonging to the same family, we have the following relations.

\[
(\chi_i(j), \chi(k)) = (\phi_i(j), \phi_i(k)) \quad (i = 1, 2) \\
(\chi_i(k, l), \chi(m, n)) = (\phi_i(k, l), \phi_i(m, n)) \quad (i = 3, 4, 5).
\]

(Compare [2, p. 431].)

Proof. We first remark that the entries in the five columns of the matrix \((R_{xj}) \) of (4.3) are just the values of the five families of characters \(\{ \chi_1(j) \}, \{ \chi_2(j) \}, \{ \chi_3(k, l) \}, \{ \chi_4(k, l) \}, \{ \chi_5(k, l) \} \) at the classes \(A_1, A_2 \) (or \(A_{22} \)), \(A_{31}, A_{32}, \) and \(A_{41} \) (or \(A_{42} \)) respectively. Further,

\[
s_1 = \frac{|G|}{|A_1|} \quad s_2 = \frac{|G|}{|A_{21}| + |A_{22}|} \quad s_3 = \frac{|G|}{|A_{31}|} \quad s_4 = \frac{|G|}{|A_{32}|} \quad s_5 = \frac{|G|}{|A_{41}| + |A_{42}|}
\]

\(|t_i| = |H_i|, \ z_i|M_i : H_i| \). Next, we see that since each \(H_i \) is normal in \(M_i \), \(\phi_1(j), \ldots, \phi_5(k, l) \) vanish outside \(H_1, \ldots, H_5 \) respectively. Also \(\chi_1(j), \ldots, \chi_5(k, l) \) vanish on all elements of \(G \), whose \(p \)-regular factors do not lie in \(H_1, \ldots, H_5 \) respectively.

To prove the first assertion of the lemma consider a scalar product of two characters from different families \(\{ \chi_i(j) \} (i = 1, 2), \{ \chi_6(k, l) \} (i = 3, 4, 5) \). We consider the contribution to the scalar product from all elements of \(G \) whose \(p \)-regular factors are conjugate to a fixed element of \(G \). In other words, we consider separately the contributions from \(\{ A_1, \ldots, A_{42} \}, \{ A'_1, \ldots, A'_{42} \}, \{ B_1(i) \}, \ldots, \{ B_6(i, j) \}, \{ B_7(i) \}, \{ B_6(i) \}, \{ B_5(i) \}, \{ C_1(i) \}, \{ C_{21}(i) \}, \{ C_{22}(i) \}, \{ C'_1(i) \}, \{ C'_2(i) \}, \{ C'_3(i) \}, \{ C_4(i) \}, \{ C_4(i) \}, \{ C_5(i) \}, \{ C_5(i) \}, \{ D_1, \ldots, D_9 \} \) (where \(i, j, \ldots \) run over suitable index sets). Using Lemmas 4.3 and 4.4 we see that each such contribution must be zero.

Similarly we compare the contribution from each of the sets to the left-hand side of (4.6), with the contribution from the intersection with \(M_i \) of the \(p \)-regular class contained in the set to the right hand side of (4.6). We see then, again using Lemmas 4.3 and 4.4, that (4.6) holds. The details are omitted.

Using Lemma 4.5 we can now construct irreducible characters of \(G \). It is easy to see that \(\phi_1(j) (\phi_2(j)) \) is an irreducible character of \(M_1 (M_2) \) if and only if \(j \in R_1 \) (\(j \in R_2 \)). Hence, corresponding to these values of \(j \), we get \(\frac{1}{2}(q^2 - 1) \) irreducible characters in the family \(\{ \chi_1(j) \} \) and \(\frac{1}{4}(q - 1)^2 \) irreducible characters in the family \(\{ -\chi_5(j) \} \). Similarly \(\chi_3(k, l), \chi_4(k, l), \chi_5(k, l) \) are irreducible if and only if \(k, l \in T_1, k, l \in T_2, k \in T_1, l \in T_1 \) respectively. We have thus constructed families of irreducible characters which correspond to the families of classes \(\{ B_1(i) \}, \ldots, \{ B_6(i, j) \} \), and in each family there are as many irreducible characters as there are conjugacy classes in the corresponding family.

We now construct four families of characters which correspond to the families of classes \(\{ B_k(i) \} \) (\(k = 6, 7, 8, 9 \)).

Lemma 4.7. For each integer \(k \), the function \(f(k) \) which takes values on \(G \) as given in the table below is a character of \(G \).
BHAMA SRINIVASAN

<table>
<thead>
<tr>
<th>A_1, A'_1</th>
<th>$A_{21}, A_{22}, A'{21}, A'{22}$</th>
<th>A_{23}, A_{32}</th>
<th>$A_{41}, A_{42}, A_{42}, A_{42}$</th>
<th>$B_0(i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2(1+q^2)$</td>
<td>2</td>
<td>$2(1+q)$</td>
<td>$2(1-q)$</td>
<td>$\tilde{\gamma}{ik} + \tilde{\gamma}{-ik} + \tilde{\eta}{ik} + \tilde{\eta}{-ik}$</td>
</tr>
</tbody>
</table>

Proof. Let $\tau(k)$ be the character of degree 6 of G which has as its value at an element a of G, the image under the isomorphism (from the multiplicative group of F into the multiplicative group of complex numbers) described in §1, of the second elementary symmetric function in the kth powers of the characteristic roots of a. (To see that such a character exists, see [2, p. 415]. This is α_k^G in Green’s notation.)

Then we see that $f(k) = \tau(k) - \chi_0(k, k) - \chi_1(k(q+1) - 2\theta_0)$ where θ_0 is the identity character of G. Formally,

$$f(k) = \frac{1}{2}\chi_2(k(q+1)) + \frac{1}{2}\chi_2(k(q-1)) + \frac{1}{2}\chi_3(k, k) + \frac{1}{2}\chi_4(k, k).$$

Suppose k is not a multiple of $\frac{1}{2}(q+1)$ or $\frac{1}{2}(q-1)$. Then, using Lemma 4.5 we see that $(f(k), f(k)) = 2$. Hence $f(k) = \zeta_1 + \zeta_2$ where either ζ_1 or $-\zeta_1$ is irreducible $(i=1, 2)$. Now let, for a fixed k,

$$g_1 = \chi_4(k, k), \quad g_2 = \chi_2(k(q-1)),$$

$$g_3 = \chi_3(k, k), \quad g_4 = \chi_2(k(q+1)).$$

Then $(g_1, g_2) = 2\delta_{ij}$ and $(g_1, f(k)) = 1$, each i. Hence the g_i must be of the form $\zeta_1 + \alpha, \zeta_1 - \alpha, \zeta_2 + \beta, \zeta_2 - \beta$ where α and β are characters distinct from the ζ_i and from each other, and either $\alpha(\beta)$ or $-\alpha(-\beta)$ is irreducible. We can assume that $g_1 = \zeta_1 + \alpha$.

Case 1. Suppose $g_4 = \zeta_1 - \alpha$; then $\frac{1}{2}(g_1 + g_4)$ is a character. Consider the restriction of $g_1 + g_4$ to the cyclic subgroup H_2.

<table>
<thead>
<tr>
<th>$g_1 + g_4$</th>
<th>h_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2(1-q)(1+q^2)$</td>
<td>$4 + 2(q-1)(1+q^2)$</td>
</tr>
</tbody>
</table>

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Since the function in the second row of the table is a character, the function \(h_1 \) in the third row is a character of \(H_2 \). If \(\frac{1}{2}(g_1 + g_4) \) is a character of \(G \), then \(\frac{1}{2}h_1 \) is a character of \(H_2 \). We shall prove that this is impossible. Now \(h_1 = 4(q-1)h_2 + h_3 + h_4 \), where \(h_2, h_3, h_4 \) are the characters of \(H_2 \) given below.

\[
\begin{array}{|c|c|}
\hline
h_2 & \frac{1}{2}(q^2-1) \\
\hline
h_3 & 2(q+1) \\
\hline
h_4 & 2(q-1) \\
\hline
\end{array}
\]

\[
(q+1)(\xi^{2ik} + \bar{\xi}^{-2ik}) \quad (q-1)(\xi^{2ik} + \bar{\xi}^{-2ik})
\]

Suppose \(\bar{\xi}^{2ik} \neq 1, -1 \) and \(\bar{\eta}^{2ik} \neq 1, -1 \). Then there is an irreducible character of \(H_2 \) occurring in \(h_3 \) with multiplicity 1 which does not occur in \(h_4 \) (e.g. the character defined by \(a_2 \to \theta^{2ik} + \bar{\theta}^{-1} \)). This shows that \(\frac{1}{2}h_1 \) cannot be a character of \(H_2 \).

If \(\bar{\xi}^{2ik} = 1 \) then \(k \) is a multiple of \(\frac{1}{2}(q-1) \) and if \(\bar{\eta}^{2ik} = 1 \) then \(k \) is a multiple of \(\frac{1}{2}(q+1) \). But, since \(\xi^{2ik} = \theta^{k(q+1)} \), \(\eta^{2ik} = \bar{\theta}^{k(q-1)} \), the case \(\bar{\xi}^{2ik} = \bar{\eta}^{2ik} = -1 \) is impossible.

Case 2. Suppose \(\frac{1}{2}(g_1 + g_3) \) is a character. We restrict \(g_1 + g_3 \) to the subgroup \(H_2 \).

\[
\begin{array}{|c|c|}
\hline
g_1 + g_3 & 2(1+q^2)^2 \\
\hline
h_5 & 2(1+q^2)^2 -4 \\
\hline
(1+q)(\xi^{2ik} + \bar{\xi}^{2ik}) & (1+q)(\xi^{2ik} + \bar{\xi}^{-2ik}) \\
\hline
(1-q)(\xi^{2ik} + \bar{\xi}^{-2ik}) & (1-q)(\xi^{2ik} + \bar{\xi}^{-2ik}) \\
\hline
\end{array}
\]

The function \(h_5 \) is a character of \(H_2 \). If \(\frac{1}{2}(g_1 + g_3) \) is a character of \(G \), then \(\frac{1}{2}h_5 \) is a character of \(H_2 \). An argument similar to that of Case 1 shows that this is impossible.

Hence we have shown

Lemma 4.9. Let \(k \) be an integer which is not a multiple of \(\frac{1}{2}(q+1) \) or \(\frac{1}{2}(q-1) \). Then the class functions \(\frac{1}{2}X_4(k,k)+\frac{1}{2}X_2(k(q-1)), \frac{1}{2}X_4(k,k)-\frac{1}{2}X_2(k(q-1)), \frac{1}{2}X_0(k,k)+\frac{1}{2}X_2(k(q+1)), \frac{1}{2}X_0(k,k)-\frac{1}{2}X_2(k(q+1)) \) are characters of \(G \). We denote these families by \(\{X_0(k,k), \{x_0(k,k)\} \) and \(\{x_6(k,k)\} \). They are of degrees \((1-q)(1+q^2), q(q-1)(1+q^2), (1+q)(1+q^2) \) and \((1+q)(1+q^2) \) respectively. We get \(\frac{j}{q-3} \) irreducible characters in each of the families \(\{-X_0(k), \{x_0(k), \{x_0(k), \{x_0(k)\} \}

The remaining values of \(k \) will be considered in (7.4). We shall then prove that \(\frac{1}{2}X_4(\frac{1}{2}(q-1), \frac{1}{2}(q-1)) \pm \frac{1}{2}X_2(\frac{1}{2}(q-1)^2) \) are also irreducible characters.

5. Characters corresponding to the families of classes \(\{C_1(i), \ldots, \{C_{42}(i)\}, \{C_1(i), \ldots, \{C_{42}(i)\} \).

(5.1) Consider the subgroup \(K \), and, for any integer \(k \), the characters \(\lambda(k) \times \lambda_0, \lambda'(k) \times \lambda_0 \) of \(K \), where \(\lambda_0 \) is the identity character of \(SL(2, q) \). Define characters \(\xi_1(k), \xi_2(k) \) of \(G \) by

\[
\xi_1(k) = \left[\lambda'(k) \times \lambda_0 \right] - \sigma(k) + \psi_1 + \psi_2 - \frac{1}{2}(1-3q)\psi_2 + \psi_4 + (q-3)\psi_5, \quad \text{if } k \text{ is even,}
\]

\[
\xi_2(k) = \left[\lambda(k) \times \lambda_0 \right] - \rho(k) + \psi_1 + \psi_2 - \frac{1}{2}(1-3q)\psi_2 + \psi_4 + (q-1)\psi_5, \quad \text{if } k \text{ is even.}
\]

If \(k \) is odd, replace \(\psi_i \) in the above definitions by \(\psi_i' \). The same convention will be followed in the rest of the paper.
Then we see that

\[
\xi_1(k) = \frac{1}{2} x_4(k, q + 1) + \frac{1}{2} x_5(k, q - 1),
\]

\[
\xi_2(k) = \frac{1}{2} x_9(k, q - 1) + \frac{1}{2} x_8(q + 1, k).
\]

Define \(\xi'_1(k) \) and \(\xi'_2(k) \) by

\[
\xi'_1(k) = -x_4(k, q + 1) + \xi_1(k),
\]

\[
\xi'_2(k) = x_9(k, q - 1) - \xi_2(k).
\]

Again by using Lemma 4.5 we see that for \(k \in T_2 \), \(\{-\xi'_1(k)\} \) and \(\{-\xi'_2(k)\} \) are irreducible characters of degrees \((q - 1)(q^2 + 1), q(q - 1)(q^2 + 1)\) respectively. For \(k \in T_1 \), \(\{\xi_8(k)\} \), \(\{\xi_9(k)\} \) are irreducible of degrees \((q + 1)(q^2 + 1), q(q + 1)(q^2 + 1)\) respectively.

(5.3) Consider the characters \(\mu_i \times \lambda^i(k) \), \(\mu_i \times \lambda(k) \) \((i=1, 2, 3, 4) \) of \(K \), for any integer \(k \). Let

\[
\xi_{21}(k) = [\mu_1 \times \lambda(k)]^0 + \psi_{32}, \quad \text{if } k + t \text{ is even},
\]

\[
\xi_{22}(k) = [\mu_2 \times \lambda(k)]^0 + \psi_{31}, \quad \text{if } k + t \text{ is even},
\]

\[
\xi'_{21}(k) = [\mu_3 \times \lambda(k)]^0 - \sigma(k + t + 1) + \psi_1 + \psi_2 - \frac{1}{2}(1 - 3q)\psi_3 + \psi_4 + (q - 3)\psi_5 - \psi_{31},
\]

\[
\text{if } k + t + 1 \text{ is even},
\]

\[
\xi'_{22}(k) = [\mu_4 \times \lambda(k)]^0 - \sigma(k + t + 1) + \psi_1 + \psi_2 - \frac{1}{2}(1 - 3q)\psi_3 + \psi_4 + (q - 3)\psi_5 - \psi_{32},
\]

\[
\text{if } k + t + 1 \text{ is even},
\]

\[
\xi_{41}(k) = [\mu_1 \times \lambda(k)]^0 - \rho(k + t) + \psi_1 + \psi_2 - \frac{1}{2}(1 - 3q)\psi_3 + \psi_4 + (q - 1)\psi_5 - \psi_{32},
\]

\[
\text{if } k + t \text{ is even},
\]

\[
\xi_{42}(k) = [\mu_2 \times \lambda(k)]^0 - \rho(k + t) + \psi_1 + \psi_2 - \frac{1}{2}(1 - 3q)\psi_3 + \psi_4 + (q - 1)\psi_5 - \psi_{31},
\]

\[
\text{if } k + t \text{ is even},
\]

\[
\xi'_{41}(k) = [\mu_3 \times \lambda(k)]^0 + \psi_{31}, \quad \text{if } k + t + 1 \text{ is even},
\]

\[
\xi'_{42}(k) = [\mu_4 \times \lambda(k)]^0 + \psi_{32}, \quad \text{if } k + t + 1 \text{ is even}.
\]

Then we have equations

\[
(\xi_{21}(k) + \xi_{22}(k)) = x_5(k, \frac{1}{2}(q - 1)),
\]

\[
(\xi'_{21}(k) + \xi'_{22}(k)) = x_4(k, \frac{1}{2}(q + 1)),
\]

\[
(\xi_{41}(k) + \xi_{42}(k)) = x_5(\frac{1}{2}(q - 1), k),
\]

\[
(\xi'_{41}(k) + \xi'_{42}(k)) = x_4(\frac{1}{2}(q + 1), k).
\]

We can verify directly that

\[
(\xi_{21}(k), \xi_{22}(k)) = 0, \quad (\xi'_{21}(k), \xi'_{22}(k)) = 0,
\]

\[
(\xi_{41}(k), \xi_{42}(k)) = 0, \quad (\xi'_{41}(k), \xi'_{42}(k)) = 0.
\]

Hence, by a further application of Lemma 4.5, we see that for \(k \in T_1 \), we get four families \(\{-\xi'_{41}(k)\}, \{-\xi'_{42}(k)\}, \{\xi_{41}(k)\}, \{\xi_{42}(k)\} \) of irreducible characters of degrees \(\frac{1}{2}(q^4 - 1), \frac{1}{2}(q^4 - 1), \frac{1}{2}(q + 1)(q^2 + 1), \frac{1}{2}(q + 1)(q^2 + 1) \) respectively. For \(k \in T_2 \) we get
four families \{-\xi_{41}(k)\}, \{-\xi_{22}(k)\}, \{\xi_{21}(k)\}, \{\xi_{42}(k)\} of irreducible characters of degree \(\frac{1}{2}(q^4-1)\), \(\frac{1}{2}(q^4-1)\), \(\frac{1}{2}(q-1)(q^2+1)\), \(\frac{1}{2}(q-1)(q^2+1)\) respectively.

We remark that there does not appear to be a clearly defined correspondence between irreducible characters and conjugacy classes in this and subsequent sections. However, we can say that the set of characters \{\xi_{1}(k)\}, \{\xi_{1}'(k)\}, \ldots., corresponds to the set of classes \{C_{1}(i)\}, \{C_{1}'(i)\}, \ldots.

6. Characters corresponding to the classes \(D_{1}, \ldots, D_{34}\). Consider the following characters of \(G\):

\[
\begin{align*}
 f_1 &= \xi_{41}(q-1), \\
 f_2 &= \xi_{21}(q+1), \\
 f_3 &= \xi_{42}(q-1), \\
 f_4 &= \xi_{22}(q+1), \\
 g &= \xi_{1}(\frac{1}{2}(q+1)), \\
 h &= \xi_{1}'(\frac{1}{2}(q+1)).
\end{align*}
\]

Using (5.2), (5.4) and (5.5) we can show that

\[
\begin{align*}
 (f_i, f_j) &= 2\delta_{ij}, \\
 (g, f_i) &= 1 \quad \text{(all } i\text{)}, \\
 (h, f_i) &= (h, f_3) = 1, \\
 (h, f_2) &= (h, f_4) = -1.
\end{align*}
\]

It then follows that the \(f_i\) must be of the form \(\xi_1 + \xi_2, \xi_1 - \xi_2, \xi_3 + \xi_4, \xi_3 - \xi_4\), where either \(\xi_i\) or \(-\xi_i\) is irreducible \((i=1, 2, 3, 4)\). We consider the values of \(\frac{1}{2}(f_i + f_j)\) \((i=2, 3, 4)\) at the class \(A_{4i}\) of \(G\). We find that only \(\frac{1}{2}(f_1 + f_4)\) is integral at \(A_{4i}\). Hence the \(\xi_i\) must be the characters \(\frac{1}{2}(f_i \pm f_4)\) and \(\frac{1}{2}(f_2 \pm f_3)\). Thus, we have characters

\[
\begin{align*}
 \frac{1}{2}\xi_{41}(q-1) + \xi_{22}(q+1), \\
 \frac{1}{2}\xi_{42}(q-1) + \xi_{21}(q+1), \\
 \frac{1}{2}\xi_{41}(q-1) - \xi_{22}(q+1), \\
 \frac{1}{2}\xi_{42}(q-1) - \xi_{21}(q+1),
\end{align*}
\]

which will be denoted by \(\phi_1, \phi_2, \phi_3, \phi_4\), and are of degrees \(\frac{1}{2}(1-q)(1+q^2)\), \(\frac{1}{2}(1-q)(1+q^2)\), \(\frac{1}{2}q(1-q)(1+q^2)\), \(\frac{1}{2}q(1-q)(1+q^2)\) respectively. The \((-\phi_i)\) are irreducible, for each \(i\).

Similarly we can show that the functions

\[
\begin{align*}
 \frac{1}{2}\xi_{41}(q-1) + \xi_{22}(q+1), \\
 \frac{1}{2}\xi_{42}(q-1) + \xi_{21}(q+1), \\
 \frac{1}{2}\xi_{41}(q-1) - \xi_{22}(q+1), \\
 \frac{1}{2}\xi_{42}(q-1) - \xi_{21}(q+1),
\end{align*}
\]

are irreducible characters of degrees \(\frac{1}{2}(1+q)(1+q^2)\), \(\frac{1}{2}(1+q)(1+q^2)\), \(\frac{1}{2}q(1+q)(1+q^2)\), \(\frac{1}{2}q(1+q)(1+q^2)\) respectively. They will be denoted by \(\phi_5, \phi_6, \phi_7, \phi_8\) respectively. We now construct a further irreducible character of degree \(q(q^2+1)\). Consider the characters \(\mu_1 \times \mu_2, \mu_3 \times \mu_4\) of \(K\). Let \(\tau_1\) be the character \(\alpha_{11}\) (see (3.12)) of \(K'\) if \(q \equiv -1 \pmod{4}\), and \(\alpha_{12}\) if \(q \equiv 1 \pmod{4}\). Let \(\tau_2\) be the character \(\alpha_{21}\) of \(K'\) if \(q \equiv -1 \pmod{4}\) and \(\alpha_{22}\) if \(q \equiv 1 \pmod{4}\). Then let

\[
\Phi_9 = [\mu_1 \times \mu_2]^0 - [\mu_3 \times \mu_4]^0 + \tau_2^0 - \tau_1^0 + \phi_5.
\]

Then

\[
\Phi_9 = \frac{1}{2}X_0(\frac{1}{2}(q-1), \frac{1}{2}(q-1)) - \frac{1}{2}X_2(\frac{1}{2}(q+1), \frac{1}{2}(q+1)),
\]

showing that \(\Phi_9\) is an irreducible character of \(G\).
7. Characters corresponding to the classes $A_1, \ldots, A_{42}, A_1', \ldots, A_{42}'.$ There are fourteen irreducible characters of this type, of which two are the identity character and the Steinberg character [6].

(7.1) Consider the subgroups $M_2, M_3, M_4,$ and characters ξ_2, ξ_3, ξ_4 of M_2, M_3, M_4 respectively defined by

$$\begin{align*}
\xi_2 &: a_2 \rightarrow -1, \quad x_2 \rightarrow 1, \quad y_2 \rightarrow 1, \\
\xi_3 &: a_3 \rightarrow -1, \quad b_3 \rightarrow -1, \quad x_3 \rightarrow 1, \quad y_3 \rightarrow 1, \quad z_3 \rightarrow 1, \\
\xi_4 &: a_4 \rightarrow -1, \quad b_4 \rightarrow -1, \quad x_4 \rightarrow 1, \quad y_4 \rightarrow 1, \quad z_4 \rightarrow 1.
\end{align*}$$

We compute $-\xi_2^0 + \xi_3^0 + \xi_4^0.$ By the choice of the subgroups and the characters, the contribution to this character from the elements of M_2, M_3, M_4 outside H_2, H_3, H_4 is zero. (This situation will be encountered several times in this section.)

Consider the characters $\delta_1, \delta_2, \delta_3, \delta_4$ of (3.15). Let

$$\begin{align*}
\delta_1 &= -\xi_2 + \xi_3 + \xi_4 - \xi_3 + \xi_4 - \xi_2 + \xi_4, \\
\delta_2 &= -\xi_2 + \xi_3 + \xi_4 - \xi_3 + \xi_4 - \xi_2 + \xi_4.
\end{align*}$$

Then, δ_1, δ_2 are of degree $1/2q^2(q^2+1)$ and

$$\delta_1 + \delta_2 = \frac{1}{2}X_3(\frac{1}{2}(q-1), \frac{1}{2}(q-1)) + \frac{1}{2}X_3(\frac{1}{2}(q+1), \frac{1}{2}(q+1)) - \frac{1}{2}X_3(\frac{1}{2}(q^2-1)).$$

Thus, $(\delta_1 + \delta_2, \delta_1 + \delta_2) = 2.$ We can verify directly that $(\delta_1, \delta_2) = 0.$ Hence δ_1 and δ_2 are irreducible.

Now define characters δ_3, δ_4 of degree $1/2(1+q^2)$ by

$$\begin{align*}
\delta_3 + \delta_1 &= \frac{1}{4}T_1 \delta_1(\frac{1}{4}(q-1), \frac{1}{4}(q-1)) + \frac{1}{4}T_1 \delta_1(\frac{1}{4}(q+1), \frac{1}{4}(q+1)) + \frac{1}{4}T_1 \delta_1(\frac{1}{4}(q^2-1)), \\
\delta_4 + \delta_2 &= \frac{1}{4}T_1 \delta_2(\frac{1}{4}(q-1), \frac{1}{4}(q-1)) + \frac{1}{4}T_1 \delta_2(\frac{1}{4}(q+1), \frac{1}{4}(q+1)) + \frac{1}{4}T_1 \delta_2(\frac{1}{4}(q^2-1)),
\end{align*}$$

where

$$\tau_1 = a_{12}, \quad \tau_2 = a_{21} \quad \text{if } q \equiv 1 \pmod{4}, \quad \text{and}$$

$$\tau_1 = a_{11}, \quad \tau_2 = a_{22} \quad \text{if } q \equiv -1 \pmod{4}.$$

Then

$$\delta_3 + \delta_4 = \frac{1}{4}X_3(\frac{1}{4}(q-1), \frac{1}{4}(q-1)) + \frac{1}{4}X_3(\frac{1}{4}(q+1), \frac{1}{4}(q+1)) + \frac{1}{4}X_3(\frac{1}{4}(q^2-1)),$$

and again we can show that δ_3, δ_4 are irreducible.

(7.2) Consider the subgroups M_1, M_5 and characters ξ_1, ξ_5 of M_1, M_5 respectively given by

$$\begin{align*}
\xi_1 &: a_1 \rightarrow -1, \quad x_1 \rightarrow 1, \\
\xi_5 &: a_5 \rightarrow -1, \quad b_5 \rightarrow -1, \quad y_5 \rightarrow 1, \quad z_5 \rightarrow 1.
\end{align*}$$

Define characters δ_5, δ_6 of G by

$$\begin{align*}
\delta_5 &= -\xi_1^0 + \xi_5^0 - \xi_5^0 + \xi_1^0 + \xi_1^0 + \xi_1^0, \\
\delta_6 &= -\xi_1^0 + \xi_5^0 - \xi_5^0 + \xi_1^0 + \xi_1^0 + \xi_1^0,
\end{align*}$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
and characters \(\theta_7, \theta_8 \) by
\[
\theta_6 + \theta_7 = [\mu_3 \times (\mu_1 + \mu_2)]^q + \psi_3, \\
\theta_6 + \theta_8 = [\mu_4 \times (\mu_1 + \mu_2)]^q + \psi_4.
\]
Then
\[
\theta_5 + \theta_6 = -x_1(\frac{1}{4}(q^2+1)) + \chi_3(\frac{1}{4}(q+1), \frac{1}{4}(q-1)), \\
\theta_7 + \theta_8 = x_1(\frac{1}{4}(q^2+1)) + \chi_3(\frac{1}{4}(q+1), \frac{1}{4}(q-1)),
\]
and again it can be shown that \(-\theta_5, -\theta_6, -\theta_7, -\theta_8 \) are irreducible characters of degrees \(\frac{1}{4}q^2(q^2-1), \frac{1}{4}q^2(q^2-1), \frac{1}{4}(q^2-1), \frac{1}{4}(q^2-1) \) respectively.

(7.3) We first construct four characters \(K_1, K_2, K_3, K_4 \) of \(G \) of degrees \(q(q^2+1) \), \(q(q^2+1) \), \(q^2 \), \(q^2 \) respectively, which will be used to construct four irreducible characters of \(G \).

Take the subgroups \(M_3, M_4 \) and characters \(\rho_{31}, \rho_{32} \) of \(M_3 \) and \(\rho_{41}, \rho_{42} \) of \(M_4 \) given by
\[
\rho_{31}: a_3 \rightarrow 1, \quad b_3 \rightarrow 1, \quad x_3 \rightarrow 1, \quad y_3 \rightarrow 1, \quad z_3 \rightarrow 1, \\
\rho_{32}: a_3 \rightarrow 1, \quad b_3 \rightarrow 1, \quad x_3 \rightarrow -1, \quad y_3 \rightarrow -1, \quad z_3 \rightarrow -1, \\
\rho_{41}: a_4 \rightarrow 1, \quad b_4 \rightarrow 1, \quad x_4 \rightarrow 1, \quad y_4 \rightarrow 1, \quad z_4 \rightarrow 1, \\
\rho_{42}: a_4 \rightarrow 1, \quad b_4 \rightarrow 1, \quad x_4 \rightarrow -1, \quad y_4 \rightarrow -1, \quad z_4 \rightarrow -1.
\]
Consider the characters of degree \(q(q^2+1) \)
\[
\rho_{31}^q + \rho_{32}^q - \rho_{41}^q - \rho_{42}^q + \alpha_3^q - \alpha_1^q + \delta_2^q - \delta_2^q + \psi_5, \\
\rho_{31}^q + \rho_{32}^q - \rho_{41}^q - \rho_{42}^q + \alpha_3^q - \alpha_1^q + \delta_2^q - \delta_2^q + \psi_5.
\]
(For the definitions of \(\delta_5, \delta_2 \) see (3.15).) These two characters are identical on all classes of \(G \) except \(D_{31}, D_{32}, D_{33}, D_{34} \). On these classes one of them, which we denote by \(K_1 \), takes values \((q, -q, -q, q) \); the other, which we denote by \(K_2 \), takes values \((-q, q, q, -q) \). Let \(\Gamma_1, \Gamma_2 \) be class functions on \(G \) which take values \((q, -q, -q, q) \) and \((-q, q, q, -q) \) respectively on \(D_{31}, D_{32}, D_{33}, D_{34} \), and vanish on all other classes of \(G \). Then
\[
K_1 = \frac{1}{4}\chi_3(q-1, q-1)-\frac{1}{4}\chi_4(q+1, q+1)+\Gamma_1, \\
K_2 = \frac{1}{4}\chi_3(q-1, q-1)-\frac{1}{4}\chi_4(q+1, q+1)+\Gamma_2.
\]
Thus \((K_1, K_2) = 0 \) and \((K_1, K_1) = (K_2, K_2) = 2 \).

Now consider the following characters of \(M_1, M_2, M_3, M_4, M_5 \) respectively:
\[
\sigma_1: a_1 \rightarrow 1, \quad x_1 \rightarrow 1, \\
\sigma_2: a_2 \rightarrow 1, \quad x_2 \rightarrow -1, \quad y_2 \rightarrow -1, \\
\sigma_3: a_3 \rightarrow 1, \quad b_3 \rightarrow 1, \quad x_3 \rightarrow 1, \quad y_3 \rightarrow 1, \quad z_3 \rightarrow 1, \\
\sigma_4: a_4 \rightarrow 1, \quad b_4 \rightarrow 1, \quad x_4 \rightarrow 1, \quad y_4 \rightarrow 1, \quad z_4 \rightarrow 1, \\
\sigma_5: a_5 \rightarrow 1, \quad b_5 \rightarrow 1, \quad y_5 \rightarrow 1, \quad z_5 \rightarrow 1.
\]
Consider the characters of degree q^2

$$-\sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \sigma_4^2 - \sigma_5^2 + \sigma_1 + \sigma_2 + \frac{1}{2}(q-1)\psi_3 + \psi_4 + (q-2)\psi_5,$$

$$-\sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \sigma_4^2 - \sigma_5^2 + \sigma_1 + \sigma_2 + \frac{1}{2}(q-1)\psi_3 + \psi_4 + (q-2)\psi_5.$$

(Note that, as in (7.1), the contribution to $-\sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \sigma_4^2 - \sigma_5^2$ from the classes of the M_i outside H_i is zero.)

Again, we get two characters K_3, K_4 which differ only on $D_3, D_3, D_3, D_3,$ and

$$K_3 = -\frac{1}{4}X_4(q^2 + 1) + \frac{1}{4}X_2(q^2 - 1) + \frac{1}{4}X_3(q - 1, q - 1) + \Gamma_1,$$

$$K_4 = -\frac{1}{4}X_4(q^2 + 1) + \frac{1}{4}X_2(q^2 - 1) + \frac{1}{4}X_3(q - 1, q - 1) + \Gamma_2,$$

where Γ_1, Γ_2 are the functions defined above.

We have the following table for the scalar products (K_i, K_j).

<table>
<thead>
<tr>
<th></th>
<th>K_1</th>
<th>K_2</th>
<th>K_3</th>
<th>K_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>K_2</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>K_3</td>
<td></td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>K_4</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Since $(K_1, K_3) = 1$ we can assume that $K_1 = \nu_1 + \nu_2, K_3 = \nu_1 - \nu_4$ where ν_i or $-\nu_i$ is irreducible ($i = 1, 2, 4$). Then K_2 must be either $-\nu_1 + \nu_2$ or $\nu_3 + \nu_4$ for some ν_3 which is distinct from ν_1, ν_2, ν_4 and is such that $-\nu_3$ or ν_3 is irreducible. But if $K_2 = -\nu_1 + \nu_2$ then either $\frac{1}{4}(K_1 - K_3)$ or its negative is an irreducible character, which is impossible since it is of degree 0. Hence we have $K_1 = \nu_1 + \nu_2, K_2 = \nu_3 + \nu_4, K_3 = \nu_1 - \nu_4, K_4 = \nu_3 - \nu_2$. These equations are not sufficient to compute the ν_i. For this purpose consider

$$K_5 = \xi_3(q-1) - \theta_0.$$

Now

$$\theta_0 = \frac{1}{4}X_4(q^2 + 1) + \frac{1}{4}X_2(q^2 - 1) + \frac{1}{4}X_3(q - 1, q - 1) + \frac{1}{4}X_4(q + 1, q - 1),$$

and

$$\xi_3(q-1) = \frac{1}{4}X_3(q - 1, q - 1) + \frac{1}{4}X_3(q + 1, q - 1),$$

and so $(K_5, K_i) = 0$ ($i = 1, 2, 3, 4$). Thus $K_5 = \nu_1 + \nu_4$ or $K_5 = \nu_2 + \nu_3$.

Suppose $K_5 = \nu_2 + \nu_3$. We consider the restriction of the class function $\frac{1}{4}(K_4 + K_5)$
to the abelian subgroup V of order $4q^2$ consisting of all elements of the form

$$\begin{pmatrix}
\pm 1 & \lambda \\
\lambda & \pm 1 \\
\pm 1 & \mu \\
\mu & \pm 1
\end{pmatrix} \quad (\lambda, \mu \in F).$$

This function has the following values at the classes of G which meet V.

<table>
<thead>
<tr>
<th>A_1, A'_1</th>
<th>A_{21}, A'_{21}</th>
<th>A_{22}, A'_{22}</th>
<th>A_{31}, A'_{31}</th>
<th>A_{32}, A'_{32}</th>
<th>A_{41}, A'_{41}</th>
<th>A_{42}, A'_{42}</th>
<th>D_1</th>
<th>$D_{21}, D_{22}, D_{23}, D_{24}$</th>
<th>D_{31}, D_{32}, D_{33}</th>
<th>D_{32}, D_{33}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{2}q(1+q^2)$</td>
<td>$\frac{1}{2}q(1+q)$</td>
<td>q</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}(1+q)^2$</td>
<td>$\frac{1}{2}(1+q)$</td>
<td>$\frac{1}{2}(1-q)$</td>
<td>$\frac{1}{2}(1+q)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[We remark that $\frac{1}{2}(K_3 + K_5)$ has the same values as $\frac{1}{2}(K_4 + K_5)$ on all the classes of G except $D_{31}, D_{32}, D_{33}, D_{34}$. At these classes it has values $\frac{1}{2}(1+q), \frac{1}{2}(1-q), \frac{1}{2}(1+q)$ respectively.]

We consider the scalar product of the restriction of $\frac{1}{2}(K_4 + K_5)$ to V with the character of V defined by

$$\begin{pmatrix}
1 & \lambda \\
\lambda & 1 \\
1 & \mu \\
\mu & 1
\end{pmatrix} \rightarrow \epsilon(\lambda)e(\mu), \quad \begin{pmatrix}
1 & \\
& -1 \\
& -1 \\
& 1
\end{pmatrix} \rightarrow 1,$$

This scalar product is seen to be

$$\frac{1}{2}(q + 1), \quad \text{if } q \equiv 1 \pmod{4},$$

$$\frac{1}{4}(q + 3), \quad \text{if } q \equiv -1 \pmod{4}.$$

This shows that $\frac{1}{2}(K_4 + K_5)$ cannot be a character. Hence $K_5 = \nu_1 + \nu_4$, and this enables us to compute the characters $\nu_1, \nu_2, \nu_3, \nu_4$. We thus get four irreducible characters of degrees $q(1+q^2)/2, q(1-q^2)/2, q(1+q^2)/2, q(1+q^2)/2$, and we denote them by $\theta_9, \theta_{10}, \theta_{11}, \theta_{12}$.

(7.4) We now show that the functions $\frac{1}{2}X_4(k, k) \pm \frac{1}{2}X_6(k(q-1)), \frac{1}{2}X_6(k, k) \pm \frac{1}{2}X_6(k(q+1))$ are characters of G also for the values of k which were omitted in §4, i.e. for k a multiple of $\frac{1}{2}(q-1)$ or $\frac{1}{2}(q+1)$. We note that, by (4.8), for a fixed k it is enough to show this for one of these four functions.

Case 1. k is an odd multiple of $\frac{1}{2}(q-1)$. Then $X_6(k, k) = X_6(\frac{1}{2}(q-1), \frac{1}{2}(q-1))$, $X_6(k(q+1)) = X_6(\frac{1}{2}(q^2-1))$, and $\frac{1}{2}X_6(k, k) \pm \frac{1}{2}X_6(k(q+1)) = \Phi_6 + \theta_9 + \theta_4$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Case 2. k is an odd multiple of $\frac{1}{4}(q+1)$. In this case
\[\frac{1}{2}X_4(k, k) + \frac{1}{2}X_2(k(q-1)) = -\Phi_9 + \theta_3 + \theta_4. \]

Case 3. k is an even multiple of $\frac{1}{4}(q-1)$. In this case
\[\frac{1}{2}X_4(k, k) + \frac{1}{2}X_2(k(q+1)) = \frac{1}{2}X_3(q-1, q-1) + \frac{1}{2}X_4(q^2-1) = \theta_9 + \theta_{11} + \theta_0. \]

Case 4. k is an even multiple of $\frac{1}{4}(q+1)$. Then
\[\frac{1}{2}X_4(k, k) + \frac{1}{2}X_2(k(q-1)) = -\theta_{10} + \theta_{12} + \theta_0. \]

We can now define characters $x_6(k), x_7(k), x_8(k), x_9(k)$ as in Lemma 4.9 for any integer k. We also get one more irreducible character in each of the families $\{-x_6(k)\}$ and $\{x_7(k)\}$.

(7.5) We now give a simple construction for the Steinberg character [6] of G, which will be denoted by θ_4. Let $\Delta_2, \Delta_3, \Delta_4, \Delta_5$ be the identity characters of M_2, M_3, M_4, M_5 respectively, and let Δ_4 be the character of M_4 defined by $a_1 \rightarrow 1, x_1 \rightarrow -1$. Then the character $\Delta_4^2 - \Delta_5^2 + \Delta_6^2 - \Delta_2^2$ is of degree q^4, and is irreducible since it is equal to
\[\frac{1}{4}X_4(q^2+1) - \frac{1}{4}X_2(q^2-1) + \frac{1}{2}X_3(q-1, q-1) + \frac{1}{2}X_4(q+1, q+1) - \frac{1}{4}X_5(q+1, q-1). \]

We have now exhausted all the irreducible characters of G, since we have as many as there are conjugacy classes of G.

8. Table of characters. The table that follows contains the characters of G that were obtained in the previous sections. In the case of families of characters indexed by parameters, the parameters take rational integral values. The values of the parameters for which the characters are irreducible are indicated in the table. In some cases it is the negative of a character that is irreducible, and this will not be mentioned explicitly in the table.

The values of the characters at the classes A_2, \ldots, A_{12} are omitted, since they can be obtained from the values at A_2, \ldots, A_{42}, A'. Similarly the values of the characters at the classes $C_1(i), \ldots, C_4(i), D_{23}, D_{24}$ are omitted.

It is sufficient to give the values of one character from the pair $\{\xi_{21}(k), \xi_{22}(k)\}$, for the values of the other are then got by replacing \bar{e} by \bar{e}' and \bar{e}' by \bar{e}. A similar statement holds for the pairs $\{\xi_{21}(k), \xi_{22}(k)\}, \{\xi_{41}(k), \xi_{42}(k)\}, \{\xi_{41}(k), \xi_{42}(k)\}, \{\Phi_1, \Phi_2\}, \{\Phi_3, \Phi_4\}, \{\Phi_5, \Phi_6\}, \{\Phi_7, \Phi_8\}, \{\theta_1, \theta_2\}, \{\theta_3, \theta_4\}, \{\theta_5, \theta_6\}, \{\theta_7, \theta_8\}$.

Finally we omit the values of the characters at the classes $A_{22}, A_{42}, C_{22}(i), C_{42}(l), D_{22}, D_{23}, D_{24}$, as these can be obtained from the classes $A_{21}, A_{41}, C_{21}(i), C_{22}(l), D_{21}, D_{22}, D_{31}$ by replacing \bar{e} by \bar{e}' and \bar{e}' by \bar{e}. Again, the absence of an entry in the table indicates that the corresponding value is zero. We also use the abbreviations $t = \frac{1}{2}(q-1), \alpha_j = \bar{e}^j + \bar{e}^{-j}, \beta_j = \bar{e}^j + \bar{e}^{-j}$, and $s(k, l) = (-1)^k + (-1)^l$.

<table>
<thead>
<tr>
<th>Character</th>
<th>$\chi_1(j)$</th>
<th>$\chi_2(j)$</th>
<th>$\chi_3(k, l)$</th>
<th>$\chi_4(k, l)$</th>
<th>$\chi_5(k, l)$</th>
<th>$\chi_6(k)$</th>
<th>$\chi_7(k)$</th>
<th>$\chi_8(k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>When irreducible</td>
<td>$j \in R_1$</td>
<td>$j \in R_2$</td>
<td>$k, l \in T_1$, $k \neq l$</td>
<td>$k, l \in T_2$, $k \neq l$</td>
<td>$k \in T_2$, $l \in T_1$</td>
<td>$k \in T_2$</td>
<td>$k \in T_2$</td>
<td>$k \in T_1$</td>
</tr>
<tr>
<td>A_1</td>
<td>$(1-q^2)^2$</td>
<td>$1-q^4$</td>
<td>$(1+q)^2(1+q^2)$</td>
<td>$(1-q^2)(1+q^2)$</td>
<td>$1-q^4$</td>
<td>$(1-q)(1+q^2)$</td>
<td>$q(q-1)(1+q^2)$</td>
<td>$(1+q)(1+q^2)$</td>
</tr>
<tr>
<td>A'_1</td>
<td>$(-1)^2(1-q^2)^2$</td>
<td>$(-1)^2(1-q^2)$</td>
<td>$(-1)^k(1+q^2)^2$</td>
<td>$(-1)^k(1-q)^2$</td>
<td>$(-1)^k(1-q^2)$</td>
<td>$(-1)^k(1+q^2)$</td>
<td>$q(q-1)(1+q^2)$</td>
<td>$(1+q)(1+q^2)$</td>
</tr>
<tr>
<td>A_{21}</td>
<td>$1-q^2$</td>
<td>$1-q^2$</td>
<td>$(1+q)^2$</td>
<td>$(1-q)^2$</td>
<td>$1+q^2$</td>
<td>$1-q$</td>
<td>$q(q-1)$</td>
<td>$1+q$</td>
</tr>
<tr>
<td>A_{31}</td>
<td>$1-q$</td>
<td>$1+q$</td>
<td>$1+3q$</td>
<td>$1-q$</td>
<td>$1-q$</td>
<td>1</td>
<td>$-q$</td>
<td>$1+2q$</td>
</tr>
<tr>
<td>A_{32}</td>
<td>$1+q$</td>
<td>$1-q$</td>
<td>$1+q$</td>
<td>$1-3q$</td>
<td>$1+q$</td>
<td>$1-2q$</td>
<td>$-q$</td>
<td>1</td>
</tr>
<tr>
<td>A_{41}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$B_1(i)$</td>
<td>$\bar{y}^{-1} + \bar{y}^{-1}$</td>
<td>$\bar{y} + \bar{y}^{1}$</td>
<td>β_{ik}</td>
<td>$-\beta_{ik}$</td>
<td>α_{ik}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_2(i)$</td>
<td>$\bar{y}^{1} + \bar{y}^{-1}$</td>
<td>$\bar{y}^{1} + \bar{y}^{-1}$</td>
<td>β_{ik}</td>
<td>$-\beta_{ik}$</td>
<td>α_{ik}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_3(i, j)$</td>
<td>$\alpha_{ik}a_{il} + \alpha_{jk}a_{jl}$</td>
<td>$\beta_{il}\beta_{jk}$</td>
<td>$\beta_{ik}\beta_{jk}$</td>
<td>$\beta_{ik}\beta_{jk}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_4(i, j)$</td>
<td>$\beta_{il}\beta_{jk}$</td>
<td>$\beta_{il}\beta_{jk}$</td>
<td>$\beta_{ik}\beta_{jk}$</td>
<td>$\beta_{ik}\beta_{jk}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Character</td>
<td>$x_{1}(j)$</td>
<td>$x_{2}(j)$</td>
<td>$x_{3}(k, l)$</td>
<td>$x_{4}(k, l)$</td>
<td>$x_{5}(k, l)$</td>
<td>$x_{6}(k)$</td>
<td>$x_{7}(k)$</td>
<td>$x_{8}(k)$</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>When irreducible</td>
<td>$j \in R_1$</td>
<td>$j \in R_2$</td>
<td>$k, l \in T_3, k \neq l$</td>
<td>$k, l \in T_3, l \in T_1$</td>
<td>$k \in T_2$</td>
<td>$k \in T_2$</td>
<td>$k \in T_1$</td>
<td></td>
</tr>
<tr>
<td>$B_6(i, j)$</td>
<td>$1 + q \beta_{ij}$</td>
<td></td>
<td></td>
<td></td>
<td>$\beta_{ik} \alpha_{hl}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_6(i)$</td>
<td></td>
<td>$1 + q \beta_{ij}$</td>
<td>$1 - q \beta_{ik} \alpha_{hl}$</td>
<td></td>
<td>$\beta_{ik} + 1 - q$</td>
<td>$- q \beta_{ik} + 1 - q$</td>
<td>$1 + q$</td>
<td></td>
</tr>
<tr>
<td>$B_6(i)$</td>
<td>β_{ij}</td>
<td>$\beta_{ik} \alpha_{hl}$</td>
<td></td>
<td></td>
<td>$\beta_{ik} + 1$</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$B_6(i)$</td>
<td>$(1 - q) \alpha_{ij}$</td>
<td>$(1 - q) \alpha_{ij}$</td>
<td></td>
<td></td>
<td>$1 - q$</td>
<td>$- (1 - q)$</td>
<td>$\alpha_{ik} + 1 + q$</td>
<td></td>
</tr>
<tr>
<td>$B_6(i)$</td>
<td>α_{ij}</td>
<td>$\alpha_{ij} \alpha_{hl}$</td>
<td></td>
<td></td>
<td>1</td>
<td>$- 1$</td>
<td>$\alpha_{2ik} + 1$</td>
<td></td>
</tr>
<tr>
<td>$C_1(i)$</td>
<td></td>
<td></td>
<td>$(1 - q)(\beta_{ik} + \beta_{il})$</td>
<td>$(1 - q) \beta_{ik}$</td>
<td>$(1 - q) \beta_{ik}$</td>
<td>$(1 - q) \beta_{ik}$</td>
<td>$(1 - q) \beta_{ik}$</td>
<td></td>
</tr>
<tr>
<td>$C_21(i)$</td>
<td></td>
<td></td>
<td>$(1 - q) \beta_{ik}$</td>
<td>β_{ik}</td>
<td>β_{ik}</td>
<td>β_{ik}</td>
<td>β_{ik}</td>
<td></td>
</tr>
<tr>
<td>$C_3(i)$</td>
<td></td>
<td></td>
<td>$(1 - q)(\alpha_{ik} + \alpha_{il})$</td>
<td>$(1 - q) \alpha_{il}$</td>
<td>$(1 + q) \alpha_{ik}$</td>
<td>$(1 + q) \alpha_{ik}$</td>
<td>$(1 + q) \alpha_{ik}$</td>
<td></td>
</tr>
<tr>
<td>$C_{43}(i)$</td>
<td></td>
<td></td>
<td>$\alpha_{ik} + \alpha_{il}$</td>
<td></td>
<td>α_{il}</td>
<td>α_{il}</td>
<td>α_{il}</td>
<td></td>
</tr>
<tr>
<td>D_{1}</td>
<td>$(1 + q)^2 s(k, l)$</td>
<td>$(1 - q)^2 s(k, l)$</td>
<td>$(- 1)^{s}(1 - q)^2$</td>
<td>$(- 1)^{s}(1 - q)^2$</td>
<td>$(- 1)^{s}(1 - q)^2$</td>
<td>$(- 1)^{s}(1 + q)^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_{21}</td>
<td>$(1 + q)s(k, l)$</td>
<td>$(1 - q)(- 1)^{s}(k, l)$</td>
<td>$(- 1)^{s}(1 - q)$</td>
<td>$(- 1)^{s}(1 - q)$</td>
<td>$(- 1)^{s}(1 - q)$</td>
<td>$(- 1)^{s}(1 + q)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_{22}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Character</td>
<td>$\chi_0(k)$</td>
<td>$\xi_1(k)$</td>
<td>$\xi_1'(k)$</td>
<td>$\xi_2(k)$</td>
<td>$\xi_3(k)$</td>
<td>$\xi_{21}(k)$</td>
<td>$\xi_{21}(k)$</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>When irreducible</td>
<td>$k \in T_1$</td>
<td>$k \in T_2$</td>
<td>$k \in T_2$</td>
<td>$k \in T_1$</td>
<td>$k \in T_1$</td>
<td>$k \in T_4$</td>
<td>$k \in T_2$</td>
<td></td>
</tr>
<tr>
<td>A_1</td>
<td>$q(1+q)(1+q^2)$</td>
<td>$(1-q)(1+q^2)$</td>
<td>$q(1-q)(1+q^2)$</td>
<td>$(1+q)(1+q^2)$</td>
<td>$q(1+q)(1+q^2)$</td>
<td>$\frac{1}{2}(1-q^4)$</td>
<td>$\frac{1}{2}(1-q)^2(1+q^2)$</td>
<td></td>
</tr>
<tr>
<td>A_1'</td>
<td>$q(1+q)(1+q^2)$</td>
<td>$(-1)^s(1+q)$</td>
<td>$(1+q^2)$</td>
<td>$(-1)^s(1+q)$</td>
<td>$(1+q^2)$</td>
<td>$(1+q)^2$</td>
<td>$rac{1}{2}(1-q)^2(1-q^4)$</td>
<td></td>
</tr>
<tr>
<td>A_{21}</td>
<td>$q(1+q)$</td>
<td>$1+q^2-q$</td>
<td>q</td>
<td>$1+q+q^2$</td>
<td>q</td>
<td>$\frac{1}{2}(1+q)(1-q)\hat{e}$</td>
<td>$\frac{1}{2}(1-q)(q-1)\hat{e}$</td>
<td></td>
</tr>
<tr>
<td>A_{21}</td>
<td>q</td>
<td>$1-q$</td>
<td>$1-q$</td>
<td>$1+q$</td>
<td>$2q$</td>
<td>$\frac{1}{2}(1-q)$</td>
<td>$\frac{1}{2}(1-3q)$</td>
<td></td>
</tr>
<tr>
<td>A_{22}</td>
<td>q</td>
<td>$1-q$</td>
<td>$2q$</td>
<td>$1+q$</td>
<td>1</td>
<td>$-\hat{e}'$</td>
<td>$-\hat{e}'$</td>
<td></td>
</tr>
<tr>
<td>A_{41}</td>
<td>1</td>
<td>1</td>
<td>$\alpha_{ik}+\alpha_{jk}$</td>
<td>$\alpha_{ik}+\alpha_{jk}$</td>
<td>$\alpha_{ik}+\alpha_{jk}$</td>
<td>$\alpha_{ik}+\alpha_{jk}$</td>
<td>$\alpha_{ik}+\alpha_{jk}$</td>
<td></td>
</tr>
<tr>
<td>$B_3(i, j)$</td>
<td>$\beta_{ik}+\beta_{jk}$</td>
<td>β_{ik}</td>
<td>β_{ik}</td>
<td>β_{ik}</td>
<td>α_{jk}</td>
<td>$-\beta_{ik}$</td>
<td>$(q-1)\beta_{ik}$</td>
<td></td>
</tr>
<tr>
<td>Character</td>
<td>(x_0(k))</td>
<td>(\xi_1(k))</td>
<td>(\xi_1(k))</td>
<td>(\xi_2(k))</td>
<td>(\xi_2(k))</td>
<td>(\xi_{21}(k))</td>
<td>(\xi_{21}(k))</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>When irreducible</td>
<td>(k \in T_1)</td>
<td>(k \in T_2)</td>
<td>(k \in T_2)</td>
<td>(k \in T_1)</td>
<td>(k \in T_1)</td>
<td>(k \in T_2)</td>
<td>(k \in T_2)</td>
<td></td>
</tr>
<tr>
<td>(B_{f(i)})</td>
<td>-1</td>
<td>(\beta_{\text{inc}})</td>
<td>-1</td>
<td>(\beta_{\text{inc}})</td>
<td>((1+q)\alpha_{\text{inc}})</td>
<td>((1+q)\alpha_{\text{inc}})</td>
<td>(-\beta_{\text{inc}})</td>
<td></td>
</tr>
<tr>
<td>(B_{b(i)})</td>
<td>(qa_{2b} + 1 + q)</td>
<td>((1+q)\alpha_{\text{inc}})</td>
<td></td>
</tr>
<tr>
<td>(C_{s(i)})</td>
<td>1</td>
<td>(1 − q + \beta_{\text{inc}})</td>
<td>(q − 1 + q\beta_{\text{inc}})</td>
<td>(1 + q)</td>
<td>(−(1+q))</td>
<td>(\frac{1}{2}(1+q)\beta_{\text{inc}})</td>
<td>(q − 1 + \frac{1}{2}(1−q)\beta_{\text{inc}})</td>
<td></td>
</tr>
<tr>
<td>(C_{2s(l)})</td>
<td>((1+q)\alpha_{\text{inc}})</td>
<td>(1 + \beta_{\text{inc}})</td>
<td>(−1)</td>
<td>(1)</td>
<td>(−1)</td>
<td>(−\beta_{\text{inc}} \xi)</td>
<td>(−1 − \xi\beta_{\text{inc}})</td>
<td></td>
</tr>
<tr>
<td>(C_{3(l)})</td>
<td>((1+q)\alpha_{\text{inc}})</td>
<td>(1 − q)</td>
<td>(1 − q)</td>
<td>(1 + q + \alpha_{\text{inc}})</td>
<td>(1 + q + q\alpha_{\text{inc}})</td>
<td>(1 + q + q\alpha_{\text{inc}})</td>
<td>((1−q))</td>
<td></td>
</tr>
<tr>
<td>(C_{4s(l)})</td>
<td>(\alpha_{\text{inc}})</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>(D_{31})</td>
<td>((−1)^{l}\xi(1+q)^{2})</td>
<td>(q(1−q)s(2, k))</td>
<td>(q(1−q)s(2, k))</td>
<td>((1+q)s(2, k))</td>
<td>(q(1+q)s(2, k))</td>
<td>(q(1+q)s(2, k))</td>
<td>(q(1−q)s(2, k))</td>
<td></td>
</tr>
<tr>
<td>(D_{21})</td>
<td>((−1)^{l}\xi(1+q))</td>
<td>(s(2, k) − q)</td>
<td>(\xi(1)^{l})</td>
<td>(s(2, k) + q)</td>
<td>(q(1−q)^{2})</td>
<td>(q(1−q)^{2})</td>
<td>((1−q)^{2})</td>
<td></td>
</tr>
<tr>
<td>(D_{31})</td>
<td>((−1)^{l})</td>
<td>(s(2, k))</td>
<td></td>
</tr>
<tr>
<td>(D_{32})</td>
<td>((−1)^{l})</td>
<td>(s(2, k))</td>
<td></td>
</tr>
</tbody>
</table>

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
<table>
<thead>
<tr>
<th>Character</th>
<th>$\xi_{43}(k)$</th>
<th>$\xi_{44}(k)$</th>
<th>Φ_1</th>
<th>Φ_3</th>
<th>Φ_5</th>
<th>Φ_7</th>
<th>Φ_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>$k \in T_1$</td>
<td>$k \in T_1$</td>
<td>$\frac{1}{2}(1-q^3)(1+q^2)$</td>
<td>$\frac{1}{2}(1-q)(1+q^2)$</td>
<td>$\frac{1}{2}q(1-q)(1+q^2)$</td>
<td>$\frac{1}{2}(1+q)(1+q^2)$</td>
<td>$\frac{1}{2}q(1+q)(1+q^2)$</td>
</tr>
<tr>
<td>A'_1</td>
<td>$\frac{1}{2}(1+q^3)(1+q^2)$</td>
<td>$\frac{1}{2}(1-q^3)$</td>
<td>$\frac{1}{2}(1-q)(1+q^2)$</td>
<td>$\frac{1}{2}q(1-q)(1+q^2)$</td>
<td>$\frac{1}{2}(1+q)(1+q^2)$</td>
<td>$\frac{1}{2}q(1+q)(1+q^2)$</td>
<td>$q(1+q^2)$</td>
</tr>
<tr>
<td>A_{21}</td>
<td>$\frac{1}{2}(1+q)-q(1+q)\bar{\varepsilon}$</td>
<td>$\frac{1}{2}(1-q)-q(1+q)\bar{\varepsilon}$</td>
<td>$\frac{1}{2}(1-q^2)-q\bar{\varepsilon}$</td>
<td>$\frac{1}{2}q(1-q)-q^2\bar{\varepsilon}$</td>
<td>$\frac{1}{2}(1+q)^2+q\bar{\varepsilon}'$</td>
<td>$\frac{1}{2}q(1+q)+q^2\bar{\varepsilon}'$</td>
<td>q</td>
</tr>
<tr>
<td>A_{21}</td>
<td>$\frac{1}{2}(1+q)$</td>
<td>$\frac{1}{2}(1+q)$</td>
<td>$\frac{1}{2}(1-q)$</td>
<td>q</td>
<td>$\frac{1}{2}(1+q)$</td>
<td>q</td>
<td>q</td>
</tr>
<tr>
<td>A_{32}</td>
<td>$\frac{1}{2}(1+q)-q(1+q)\bar{\varepsilon}$</td>
<td>$\frac{1}{2}(1-q)-q(1+q)\bar{\varepsilon}$</td>
<td>$\frac{1}{2}(1-q^2)-q\bar{\varepsilon}$</td>
<td>$\frac{1}{2}q(1-q)-q^2\bar{\varepsilon}$</td>
<td>$\frac{1}{2}(1+q)^2+q\bar{\varepsilon}'$</td>
<td>$\frac{1}{2}q(1+q)+q^2\bar{\varepsilon}'$</td>
<td>q</td>
</tr>
<tr>
<td>A_{41}</td>
<td>$-\bar{\varepsilon}$</td>
<td>$-\bar{\varepsilon}$</td>
<td>$-\bar{\varepsilon}$</td>
<td>$-\bar{\varepsilon}$</td>
<td>$-\bar{\varepsilon}$</td>
<td>$-\bar{\varepsilon}$</td>
<td>$-\bar{\varepsilon}$</td>
</tr>
<tr>
<td>$B_5(i)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_6(i)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_6(i,j)$</td>
<td>$-\alpha_{ik}$</td>
<td>$-\alpha_{jk}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_6(i,j)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_6(i,j)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_6(i)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
<table>
<thead>
<tr>
<th>Character</th>
<th>$\xi_{41}(k)$</th>
<th>$\xi_{42}(k)$</th>
<th>Φ_1</th>
<th>Φ_3</th>
<th>Φ_5</th>
<th>Φ_7</th>
<th>Φ_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>When irreducible</td>
<td>$k \in T_1$</td>
<td>$k \in T_1$</td>
<td>-1</td>
<td>1</td>
<td>$-(1+q)$</td>
<td>-1</td>
<td>$q+1$</td>
</tr>
<tr>
<td>$B_7(i)$</td>
<td>$-(1+q)^{a_{ik}}$</td>
<td>-1</td>
<td>1</td>
<td>$-(1+q)$</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>$B_9(i)$</td>
<td>$-a_{ik}$</td>
<td>-1</td>
<td>1</td>
<td>$-(1+q)$</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>$C_1(i)$</td>
<td>$(1+q)$</td>
<td>-1</td>
<td>1</td>
<td>$-(1+q)$</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>$C_{21}(i)$</td>
<td>-1</td>
<td>ε'</td>
<td>-1</td>
<td>1</td>
<td>$-(1+q)$</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>$C_{3}(i)$</td>
<td>$(1+q)$</td>
<td>ε</td>
<td>ε'</td>
<td>-1</td>
<td>1</td>
<td>$-(1+q)$</td>
<td>-1</td>
</tr>
<tr>
<td>$C_{41}(i)$</td>
<td>$-1 - e_{a_{ik}}$</td>
<td>$-a_{ik} \varepsilon$</td>
<td>$-\varepsilon$</td>
<td>ε'</td>
<td>$\varepsilon'^{'}$</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>D_{1}</td>
<td>$(1+q)^{2}a_{(k, t)}$</td>
<td>$(1+q)^{2}a_{(k, t+1)}$</td>
<td>$\frac{1}{2}(1-q)s(2, t+1)$</td>
<td>$\frac{1}{2}(1-q)s(2, t+1)$</td>
<td>$\frac{1}{2}(1-q)(-1)\varepsilon$</td>
<td>$\frac{1}{2}(1-q)(-1)\varepsilon$</td>
<td>$\frac{1}{2}(1-q)(-1)\varepsilon$</td>
</tr>
<tr>
<td>D_{21}</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>D_{22}</td>
<td>$\frac{1}{2}(1-q)^{2}a_{(k, t)}$</td>
<td>$\frac{1}{2}(1-q)^{2}a_{(k, t+1)}$</td>
<td>$\frac{1}{2}(1-q)(-1)\varepsilon$</td>
<td>$\frac{1}{2}(1-q)(-1)\varepsilon$</td>
<td>$\frac{1}{2}(1-q)(-1)\varepsilon$</td>
<td>$\frac{1}{2}(1-q)(-1)\varepsilon$</td>
<td>$\frac{1}{2}(1-q)(-1)\varepsilon$</td>
</tr>
<tr>
<td>D_{31}</td>
<td>$s(k+1, t+1)\varepsilon + (-1)^{t}e^{'}$</td>
<td>$s(k+1, t+1)\varepsilon$</td>
<td>$s(2, t+1)$</td>
<td>$s(2, t+1)$</td>
<td>$s(2, t)$</td>
<td>$s(2, t)$</td>
<td>$s(2, t)$</td>
</tr>
<tr>
<td>D_{32}</td>
<td>$s(2, t+1)$</td>
<td>$s(2, t+1)$</td>
<td>$s(2, t)$</td>
<td>$s(2, t)$</td>
<td>$s(2, t)$</td>
<td>$s(2, t)$</td>
<td>$s(2, t)$</td>
</tr>
</tbody>
</table>

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
<table>
<thead>
<tr>
<th>Character</th>
<th>(\theta_1)</th>
<th>(\theta_2)</th>
<th>(\theta_3)</th>
<th>(\theta_4)</th>
<th>(\theta_5)</th>
<th>(\theta_6)</th>
<th>(\theta_7)</th>
<th>(\theta_8)</th>
<th>(\theta_9)</th>
<th>(\theta_{10})</th>
<th>(\theta_{11})</th>
<th>(\theta_{12})</th>
<th>(\theta_{13})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>(\frac{1}{2} q^2 (1+q)^2)</td>
<td>(\frac{1}{2} (1+q^2))</td>
<td>(\frac{1}{2} q^2 (1-q^2))</td>
<td>(\frac{1}{2} (1-q^2))</td>
<td>(\frac{1}{2} q(1+q^2))</td>
<td>(\frac{1}{2} q(1-q^2))</td>
<td>(\frac{1}{2} q(1+q^2))</td>
<td>(\frac{1}{2} q(1-q^2))</td>
<td>(\frac{1}{2} q(1+q^2))</td>
<td>(\frac{1}{2} q(1+q^2))</td>
<td>(q^4)</td>
<td>(\frac{1}{2} q(1+q^2))</td>
<td>(\frac{1}{2} q(1+q^2))</td>
</tr>
<tr>
<td>(A_1')</td>
<td>(\frac{1}{2} q^2 (1+q^2))</td>
<td>(\frac{1}{2} (1+q^2))</td>
<td>(\frac{1}{2} q^2 (1-q^2))</td>
<td>(\frac{1}{2} (1-q^2))</td>
<td>(\frac{1}{2} q(1+q^2))</td>
<td>(\frac{1}{2} q(1-q^2))</td>
<td>(\frac{1}{2} q(1+q^2))</td>
<td>(\frac{1}{2} q(1-q^2))</td>
<td>(\frac{1}{2} q(1+q^2))</td>
<td>(\frac{1}{2} q(1+q^2))</td>
<td>(q^4)</td>
<td>(\frac{1}{2} q(1+q^2))</td>
<td>(\frac{1}{2} q(1+q^2))</td>
</tr>
<tr>
<td>(A_{21})</td>
<td>(-q^2 \xi)</td>
<td>(\frac{1}{2} (1+q) + q \xi)</td>
<td>(-q^2 \xi)</td>
<td>(\frac{1}{2} (1-q) - q \xi)</td>
<td>(\frac{1}{2} q(1+q))</td>
<td>(\frac{1}{2} q(1-q))</td>
<td>(\frac{1}{2} q(1+q))</td>
<td>(\frac{1}{2} q(1-q))</td>
<td>(\frac{1}{2} q(1+q))</td>
<td>(\frac{1}{2} q(1+q))</td>
<td>(q^4)</td>
<td>(\frac{1}{2} q(1+q))</td>
<td>(\frac{1}{2} q(1+q))</td>
</tr>
<tr>
<td>(A_{31})</td>
<td>(\frac{1}{2} (1+q))</td>
<td>(\frac{1}{2} (1-q))</td>
<td>(q)</td>
</tr>
<tr>
<td>(A_{32})</td>
<td>(\frac{1}{2} (1-q))</td>
<td>(\frac{1}{2} (1+q))</td>
<td>(q)</td>
</tr>
<tr>
<td>(A_{41})</td>
<td>(-\xi')</td>
<td>(-\xi')</td>
<td>(1)</td>
</tr>
<tr>
<td>(B_1(i))</td>
<td>((-1)^{i+1})</td>
<td>((-1)^{i+1})</td>
<td>((-1)^{i})</td>
</tr>
<tr>
<td>(B_2(i))</td>
<td>((-1)^{i+1})</td>
<td>((-1)^{i})</td>
<td>((-1)^{i+1})</td>
</tr>
<tr>
<td>(B_3(i, j))</td>
<td>((-1)^{i})</td>
</tr>
<tr>
<td>(B_4(i, j))</td>
<td>((-1)^{i})</td>
</tr>
<tr>
<td>(B_5(i, j))</td>
<td>((-1)^{i})</td>
</tr>
<tr>
<td>(B_6(i))</td>
<td>(-q)</td>
<td>(1)</td>
<td>(q-1)</td>
<td>(q)</td>
<td>(-1)</td>
<td>(-q)</td>
<td>(q-1)</td>
<td>(q)</td>
<td>(-1)</td>
<td>(-q)</td>
<td>(q-1)</td>
<td>(q)</td>
<td>(-1)</td>
</tr>
<tr>
<td>Character</td>
<td>θ_1</td>
<td>θ_3</td>
<td>θ_5</td>
<td>θ_7</td>
<td>θ_9</td>
<td>θ_{10}</td>
<td>θ_{11}</td>
<td>θ_{12}</td>
<td>θ_{13}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_1(i)$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$B_2(i)$</td>
<td>q</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$B_3(i)$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$C_1(i)$</td>
<td>$\frac{1}{2}(1-q)(-1)^i$</td>
<td>$\frac{1}{2}(1-q)(-1)^i$</td>
<td>$\frac{1}{2}(1+q)(-1)^i$</td>
<td>$\frac{1}{2}(1+q)(-1)^i$</td>
<td>$q-1$</td>
<td>-1</td>
<td>q</td>
<td>q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$C_2(i)$</td>
<td>$(-1)^{i+1}q^e$</td>
<td>$(-1)^{i+1}q^e$</td>
<td>$(-1)^{i+1}q^e$</td>
<td>$(-1)^{i+1}q^e$</td>
<td>-1</td>
<td>-1</td>
<td>q</td>
<td>q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$C_3(i)$</td>
<td>$\frac{1}{2}(1+q)(-1)^i$</td>
<td>$\frac{1}{2}(1+q)(-1)^i$</td>
<td>$\frac{1}{2}(1-q)(-1)^i$</td>
<td>$\frac{1}{2}(1-q)(-1)^i$</td>
<td>q</td>
<td>1</td>
<td>q</td>
<td>q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$C_4(i)$</td>
<td>$(-1)^{i+1}q^e$</td>
<td>$(-1)^{i+1}q^e$</td>
<td>$(-1)^{i+1}q^e$</td>
<td>$(-1)^{i+1}q^e$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_1</td>
<td>$(-1)^iq$</td>
<td>$(-1)^iq$</td>
<td></td>
<td></td>
<td>$\frac{1}{2}(1+q)^2$</td>
<td>$-\frac{1}{2}(1-q)^2$</td>
<td>$\frac{1}{2}(q^2-1)+q$</td>
<td>$\frac{1}{2}(1+2q-q^2)$</td>
<td>q^a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_2</td>
<td>$(-1)^{i+1}q^e$</td>
<td>$(-1)^i[(1+q)+e]$</td>
<td>$(-1)^iq^e$</td>
<td>$(-1)^i$</td>
<td>$\frac{1}{2}(1+q)$</td>
<td>$\frac{1}{2}(q-1)$</td>
<td>$\frac{1}{2}(q-1)$</td>
<td>$\frac{1}{2}(q-1)$</td>
<td>$\frac{1}{2}(1+q)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_3</td>
<td>$(-1)^{i+1}(e' - e)$</td>
<td>$\frac{1}{2}(1+q)$</td>
<td>$\frac{1}{2}(1-q)$</td>
<td>$-\frac{1}{2}(1+q)$</td>
<td>$\frac{1}{2}(1-q)$</td>
<td>$\frac{1}{2}(q-1)$</td>
<td>$\frac{1}{2}(q-1)$</td>
<td>$\frac{1}{2}(q-1)$</td>
<td>$\frac{1}{2}(1+q)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_4</td>
<td>$(-1)^{i+1}(e' - e)$</td>
<td>$\frac{1}{2}(1+q)$</td>
<td>$\frac{1}{2}(1-q)$</td>
<td>$-\frac{1}{2}(1+q)$</td>
<td>$\frac{1}{2}(1-q)$</td>
<td>$\frac{1}{2}(q-1)$</td>
<td>$\frac{1}{2}(q-1)$</td>
<td>$\frac{1}{2}(q-1)$</td>
<td>$\frac{1}{2}(1+q)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

The Ramanujan Institute, University of Madras, Madras, India