CONVERGENT HIGHER DERIVATIONS
ON LOCAL RINGS

BY

NICKOLAS HEEREMA(1)

I. Introduction. In this paper we define a quasi-local ring \(R \), or \((R, M) \), to be a commutative ring with unity having a unique maximal ideal \(M \) such that \(\bigcap_{n=1}^{\infty} M^n = \{0\} \). Thus a Noetherian quasi-local ring is a local ring. A higher derivation \(D = \{D_i\}_{i=1}^{\infty} \) on a quasi-local ring \(R \) is said to be convergent if, for all \(a \) in \(R \), \(\sum_{i=0}^{\infty} D_i(a) \) is a convergent series in the \(M \)-adic topology. \(D_0 \) always denotes the identity mapping. If \(R \) is complete the mapping \(\alpha_D : a \mapsto \sum_{i=0}^{\infty} D_i(a) \) is an endomorphism of \(R \) which induces the identity mapping on the residue field of \(R \) (Lemma 1). With suitable restrictions on \(D \), \(\alpha_D \) is an automorphism and hence an inertial automorphism. A seemingly “natural” additional condition sufficient to insure that \(\alpha_D \) is an automorphism is the condition

\[
D_i(M) \subseteq M^2, \quad i \geq 1.
\]

A convergent higher derivation which satisfies (1) is said to be \(M \)-convergent.

In a number of recent papers [4], [5], [7], Neggers, Wishart, and the author have used convergent higher derivations to study the inertial automorphisms of particular kinds of complete local rings. In particular Neggers [5] used higher derivations to relate properties of the higher ramification groups of a ramified \(n \)-ring to its derivation structure. The author has shown [4, Theorem 3.1] that if \(R \) is an unramified \(n \)-dimensional complete regular local ring then every inertial automorphism of \(R \) is of the form \(\alpha_D \) where \(D = \{D_{i_1, \ldots, i_n}\} \) is a convergent higher derivation on \(n \)-indices. By defining \(H_m \) to be \(\sum_{i_1 + \ldots + i_n = m} D_{i_1, \ldots, i_n} \) one obtains a higher derivation \(H \) on one index such that \(\alpha_H = \alpha_D \), and \(H \) is, in fact, what is called “strongly convergent” in this paper (Definition 3). The representation of inertial automorphisms by higher derivations provides a convenient means for determining the factor groups of the higher ramification groups of \(R \) in this case [4, Theorems 2.1, 2.2, 2.3].

This paper is primarily concerned with convergent higher derivations as such. A bit of calculation with the possibility of defining a composition of higher derivations so that the condition \(\alpha_{D \circ D'} = \alpha_D \alpha_{D'} \) obtains leads to Definition 2. Theorem 1 asserts that the set of all higher derivations \(H(R, R) \) on any (noncommutative) ring \(R \) is a group with respect to this composition. §II is concerned with closure properties of various convergent subsets of \(H(R, R) \) with respect to both the group

(1) This research was supported by NSF GP-4007.
operation and taking inverses, all in the case in which R is quasi-local. Theorem 2 states that the convergent higher derivations form a subsemigroup $H_c(R, R)$ of $H(R, R)$ and Theorem 3 states that the subsets $H_M^c(R, R)$, $H_M^u(R, R)$, and $H_M^s(R, R)$ of M-convergent, uniformly M-convergent and strongly M-convergent higher derivations (see Definition 3) form subgroups of $H(R, R)$. An example following the proof of Theorem 2 illustrates the fact that D may be convergent and α_D may be an automorphism whereas D^{-1} is not convergent.

It is readily seen that if D is M-convergent then α_D is in H_1, the subgroup of those inertial automorphisms α satisfying the condition $\alpha(a) = a + M^2$ for all a in M. Conversely, if $\alpha = \alpha_D$ and α is in H_1 then D is M-convergent. If R is a v-ring (unramified) every inertial automorphism is in H_1. If R is an unramified complete regular local ring then the mapping $\Delta: D \to \alpha_D$ is a homomorphism of $H^M_c(R, R)$ onto H_1. As a matter of fact Δ restricted to $H^M(R, R)$ still maps onto H_1. It follows from work of Wishart [7, pp. 50, 51] that a ramified ring may have inertial automorphisms represented by D in $H^M_c(R, R)$ but not by D in $H^M(R, R)$.

§II deals with the question of necessary and sufficient conditions on a complete local ring R that every convergent higher derivation be uniformly convergent. Theorem 5 asserts that if the residue field k has characteristic p, the condition that k have a finite p-basis is sufficient and if R is regular this condition is necessary. If R is regular and k has characteristic zero (R is a power series ring over k) then every convergent higher derivation is uniformly convergent if and only if k has finite transcendency degree over its prime field.

II. Closure properties. Initially we assume S to be an arbitrary associative ring and R an over ring of S.

Definition 1. A higher derivation D of S into R is a set $\{D_i\}_{i=1}^{\infty}$ of mappings of S into R such that for all $i \geq 1$ and all a, b in S,

(i) $D_i(a + b) = D_i(a) + D_i(b),$

(ii) $D_i(ab) = \sum_{j=0}^{i} D_j(a)D_{i-j}(b),$

where D_0 denotes the identity mapping. The symbol $H(S, R)$ will designate the set of all higher derivations of S into R, and Q will represent the higher derivation $\{Q_i\}$ such that Q_i is the zero mapping for all $i \geq 1$.

Definition 2. If H and D are in $H(S, S)$ then $K = H \circ D$ is the set of mappings $\{K_i\}_{i=1}^{\infty}$ where

\[
K_i = \sum_{j=0}^{i} H_j D_{i-j}.
\]

Proposition 1. The set of mappings K as defined by (2) is a higher derivation.

Proof. Proposition 1 and Theorem 1, below, follow immediately from the following fact first observed by Schmidt [6]. Let G represent the group of all automorphisms α on the power series ring $R[[X]]$ satisfying the conditions

(i) $\alpha(X) = X$ and (ii) $\eta \alpha(a) = a$ for a in R where $\eta(\sum a_i X^i) = a_0$. Given $\alpha \in G$,
$D^a = \{D^a_i\}$ is in $H(R, R)$ where $D^a_i(a)$ is the coefficient of X^i in $a(a)$. The mapping $\alpha \mapsto D_\alpha$ is a one-to-one correspondence between G and $H(R, R)$ which then induces a group structure on $H(R, R)$, the induced operation being (2). Thus, we have

Theorem 1. Given any ring R, $H(R, R)$ is a group with respect to the composition (2).

For later use we exhibit below an explicit description of D^{-1} in terms of D. Let (r, n) be a partition of the integer n into r nonnegative summands. If $(r, n) = i_1, \ldots, i_r$ we let $[D]_{i_1, \ldots, i_r}$ be the sum of the formally distinct products of the r maps D_{i_1}, \ldots, D_{i_r}. Thus, if $(3, 5) = \{1, 2, 2\}$ then $[D]_{(3, 5)}$ is $D_1 D_3^2 + D_2 D_3 D_2 + D_2^2 D_1$.

Given D in $H(R, R)$ we define \overline{D} by

$$\overline{D}_n = \sum_{(r, n)} (-1)^r[D]_{i_1, \ldots, i_r}, \quad n \geq 1,$$

and contend that $\overline{D} = D^{-1}$.

The expression $\sum_{i_1, \ldots, i_r} D_{i_1} \overline{D}_{i_2 - i_1}$ is a sum of terms of the form $D_{i_1} \cdots D_{i_{r+1}}$ each such terms occurring twice in $D_{i_1} \overline{D}_{i_2 - i_1}$ with coefficient $(-1)^{r'}$ and in $D_{i_1} \overline{D}_{r+1}$ with coefficient $(-1)^{r+1}$. Hence $D \circ \overline{D} = Q$. But this equality uniquely determines the set of maps \overline{D} and thus $\overline{D} = D^{-1}$.

Lemma 1. Let (R, M) be a quasi-local ring and let S be a subring of R with the property that every nonunit of S is in M. If D in $H(S, R)$ converges then $D \circ (S) \subseteq M$ for $i > 0$.

Proof. Let u be a unit in S such that $D_i(u)$ is a unit for some $i > 0$ and let n be the least such integer. Since

$$0 = D_n(1) = D_n(uu^{-1}) = uD_n(u^{-1}) + u^{-1}D_n(u) + \sum_{i=1}^{n-1} D_i(u)D_{n-i}(u^{-1}),$$

it follows that $D_n(u^{-1})$ is also a unit. Since D converges there is a largest integer, say s, such that $D_s(u)$ is a unit, and a largest integer t such that $D_t(u^{-1})$ is a unit. Now $0 = D_{s+t}(1) = D_{s+t}(uu^{-1})$ and $D_{s+t}(uu^{-1}) \equiv D_s(u)D_t(u^{-1}) \pmod{M}$, which yields a contradiction. Thus $D_t(u)$ is in M for all units u. Next, let a be in $S \cap M$. Then $D_t(1 + a) = D_t(1) + D_t(a)$ is in M and thus $D_t(a)$ is in M. This proves Lemma 1.

Theorem 2. If R is a quasi-local ring the set $H_c(R, R)$ of convergent higher derivations on R is a subsemigroup of $H(R, R)$.

Proof. Let D and H be in $H_c(R, R)$. Given a in R and a positive integer n, there is an integer m such that if $i \geq m$ then $H_i(a)$ is in M^n and there exists an integer t such that if $i \geq t$ then $H_t(a)$ is in M^n for $j = 0, 1, \ldots, m - 1$. It is readily seen from (ii) of Definition 1 and from Lemma 1 that $D_i(M^j) \subseteq M^j$ for all $i > 0$, and $t > 0$. Thus, if s is the maximum of $2m$ and $2t$ and if $j > s$ then $\sum_{i=0}^{j-1} D_i H_{i-j}(a)$ is in M^j. Thus $D \circ H$ is in $H_c(R, R)$.
A simple example illustrates the fact that a convergent higher derivation need not have a convergent inverse. Let \(k \) be any field and let \(k[[X]] \) be the power series ring in the indeterminate \(X \) over \(k \). We define \(D \in H_k(k[[X]], k[[X]]) \) by the conditions

(i) \(D_j(a) = 0 \) for \(a \in k \) and all \(j > 0 \);
(ii) \(D_1(X) = X, D_2(X) = 0 \) for \(i \geq 2 \).

These conditions determine an obviously unique higher derivation by [2, Theorem 2] and Proposition 2 which appears later in this paper. We note that:

\[
D_n^{-1}(X) = \sum_{(r,n)} (-1)^r[D]_{(r,n)}(X) = (-1)^n D_1(X) = (-1)^n X.
\]

Since this is true for any \(n > 0 \) it follows that \(D^{-1} \) does not converge. Note, however, that \(a_D \) is an automorphism. As this example suggests a sufficient condition for \(D \in H_c(R, R) \) to have a convergent inverse is that \(D(M) \subseteq M^2 \), by which is meant \(D_i(M) \subseteq M^2 \) for all \(i > 0 \). We shall see (Lemma 5) that this condition is fulfilled if \(R \) is a \(v \)-ring, a one-dimensional complete regular local ring having characteristic zero with residue field having characteristic \(p \neq 0 \).

Definition 3. Let \((R, M) \) be a quasi-local ring and let \(S \) be a subring. \(D \) in \(H_S(S, R) \) is said to be

(a) \(M \)-convergent if \(D(S \cap M) \subseteq M^2 \);
(b) uniformly \(M \) convergent if \(D \) is \(M \)-convergent and converges uniformly;
(c) strongly convergent if \(D_i(S) \subseteq M^i \) for \(i = 1, 2, \ldots \). Strong \(M \)-convergence is defined as in (b).

The symbols \(H_a(S, R) \) and \(H_c(S, R) \) will represent the subsets of \(H(S, R) \) consisting of the uniformly convergent \(D \) and the strongly convergent \(D \) respectively. A superscript \(M \) indicates \(M \) convergence i.e. \(H^M_a(S, R) \) is the set of all uniformly \(M \) convergent \(D \) in \(H(S, R) \).

Theorem 3. Let \(R \) be a quasi-local ring. \(H^M_a(R, R) \), \(H^M_c(R, R) \) and \(H^M_t(R, R) \) are all subgroups of \(H(S, R) \). \(H_a(R, R) \) is a subsemigroup of \(H_c(R, R) \).

Proof. Obviously the product of \(M \)-convergent higher derivations is \(M \)-convergent. We note that if \(D \) and \(H \) of the proof of Theorem 2 are in \(H_a(R, R) \) then the proof is independent of the choice of \(a \) and hence \(D \circ H \) is in \(H_a(R, R) \).

If \(D \) is in \(H^M_t(R, R) \) then

\[
D_i(M^i) \subseteq M^{i+1}, \quad i \geq 1, \quad u \geq 0.
\]

Relation (4) implies closure in \(H^M_t(R, R) \) and also leads immediately to the conclusion that if \((r, i) \) is any partition of \(i+1 \) and \(D \in H^M_t(R, R) \) then \([D]_{(r,0)}(M^i) \subseteq M^{i+1} \). Thus if \(D \) is in \(H^M_t(R, R) \) so is \(D^{-1} \). The example following Theorem 2 is a strongly convergent higher derivation. If \(D \) represents the higher derivation in question and \(H = D \circ D \) then \(H_a(X) = X \), illustrating the fact that \(H_a(R, R) \) is neither closed with respect to product nor with respect to taking inverse.
In order to verify that the inverse of \(D \) in \(H_c^m(R, R) \) is in \(H_c^m(R, R) \) it is sufficient to show that, given \(a \) in \(R \) and \(m \geq 0 \), there is an integer \(n \) such that if \(i_1, \ldots, i_r \) is any partition into positive integers of \(t > n \) then,

\[
D_{i_1} \cdots D_{i_r}(a) \in M^m.
\]

Since for \(D \) in \(H_c^m(R, R) \)

\[
D_i(M^j) \subseteq M^{j+1}, \quad i > 0, \quad j \geq 0
\]

it follows that (5) holds if \(r \leq m \). There is an integer \(n_1 \) such that if \(i > n_1 \) then \(D_i(a) \in M^m \) and an integer \(n_2 \) such that if \(i_2 > n_2 \) then \(D_{i_2}D_{i_1}(a) \in M^m \) for \(i_1 = 1, 2, \ldots, n_1 \).

Iteratively, we define integers \(n_1, n_2, \ldots, n_{m-1} \) such that, if \(0 < j < m \) and \(i_j > n_j \), then \(D_{i_j}D_{i_{j-1}} \cdots D_{i_1}(a) \in M^m \) if \(0 < i_t \leq n_t \) for \(t = 1, \ldots, j - 1 \). Let \(n' \) be the maximum of \(n_1, n_2, \ldots, n_{m-1} \) and let \(n = m(n' + 1) \). If \(j_1, \ldots, j_r \) are positive integers such that \(j_1 + \cdots + j_r > n \) then either \(r \leq m \) or \(j_1 > n' \) for some \(i \). In either case \(D_{j_1} \cdots D_{j_r}(a) \in M^m \). It follows then from (3) that if \(D \) is \(M \) convergent so is \(D^{-1} \). If \(D \) is in \(H_c^m(R, R) \) the above argument again applies independently of the choice of \(a \). We conclude that \(D^{-1} \) is in \(H_c^m(R, R) \) if \(D \) is in \(H_c^m(R, R) \).

III. Uniformly convergent higher derivations. We begin with some basic facts about extensions of higher derivations and their convergence properties. Let \(T \) be a commutative overring of a ring \(S \) and let \(a \in S \) be invertible in \(S \). Then if \(D \in H(S, T) \)

\[
D_n(a^{-1}) = \sum_{(r, n)} (-1)^{r+1} a^{-(r+1)}C(r, n)[D(a)]_{r, n},
\]

where \(C(r, n) = r!/n_1! \cdots n_t! \) and \(n_1, \ldots, n_t \) represent the number of times the distinct integers of \((r, n) \) occur in \((r, n) \). Also if \((r, n) = j_1, \ldots, j_r \), then \([D(a)]_{r, n}\) is the sum of all the formally distinct products of the \(r \) quantities \(D_{j_1}(a), \ldots, D_{j_r}(a) \).

For \(n = 1 \) we have \(D_1(a^{-1}) = -a^{-1}D_1(a) \). Proceeding by induction, \(0 = D_2(aa^{-1}) = \sum D_2(a)D_{n, 2}(a^{-1}) \) or \(D_n(a^{-1}) = -a^{-1} \sum_{i=0}^{n-1} D_{n, i}(a)D_i(a^{-1}) \). Substitution of (6, i) in the right hand side of this equality for \(i = 1, \ldots, n - 1 \) yields (6, n) without difficulty. Let \(T \) and \(S \) be as above and let \(D \in H(S, T) \). The mapping \(\tau_D : S \to T[[X]] \) given by (7) is an isomorphism with the property \(\eta_D \) is the identity on \(S \) where again \(\eta(\sum a_iX^i) = a_0 \). Conversely, if \(\tau : S \to T[[X]] \) is a homomorphism such that \(\eta \tau \) is the identity on \(S \) then \(\tau(a) = a + \sum X^iD_i(a) \) and \(D' = \{D_i \} \) is in \(H(S, T) \). As in the proof of Theorem 1, \(D \rightarrow \tau_D \) is a one-to-one correspondence between \(H(S, T) \) and the set of isomorphisms \(\tau \) of \(S \) into \(T[[X]] \) such that \(\eta \tau \) is the identity map on \(S \).

Let \(M \) be a multiplicatively closed subset of \(S \) each element of which has an inverse in \(T \). Thus \(S_M \) the ring of quotients with respect to \(M \) is a subring of \(T \).

Lemma 2. Each \(D \) in \(H(S, T) \) has a unique extension to \(H(S_M, T) \).
Proof. The lemma follows from the existence and uniqueness of the extension of \(\tau_D \) to \(S_M \).

Lemma 3. Let \(S \) be a subring of the quasi-local ring \((R, M)\) and let \(B \) be a subset of \(R \). Let \(D \) be in \(H(S[B], R) \).

(i) If \(D \) converges on \(S \) and on \(B \) then \(D \in H_c(S[B], R) \).
(ii) If \(D \) is uniformly convergent on \(S \) and on \(B \) and \(D(S[B]) \subseteq M^n \) then \(D \in H_u(S[B], R) \).
(iii) If \(D \) is strongly convergent on \(S \) and on \(B \) then \(D \in H_t(S[B], R) \).
(iv) If \(D(S \cap M) \subseteq M^2 \) and \(D(B \cap M) \subseteq M^2 \) then \(D(S[B] \cap M) \subseteq M^2 \).

Proof. Each element in \(S[B] \) is a sum of terms of the form \(sb_1 \cdots b_t \) where \(s \in S; b_1, \ldots, b_t \in B \) and \(t \geq 0 \). Now

\[
D(s, b_1, \ldots, b_t) = \sum_{i_0 + \cdots + i_t = n} D_{i_0}(s) D_{i_1}(b_1) \cdots D_{i_t}(b_t).
\]

Clearly, if \(D \) converges at \(s, b_1, \ldots, b_t \) then \(D \) converges at \(sb_1 \cdots b_t \).

Statement (ii) is a consequence of the following lemma which will be useful elsewhere.

Lemma 4. Let \(S \) be a subring of a quasi-local ring \((R, M)\) and let \(B \) be a subset of \(S \). If \(D \in H(S, R) \) converges uniformly on \(B \) and \(D(B) \subseteq M \) then given \(\varepsilon > 0 \), there is an \(m > 0 \) such that given any product \(b_1 \cdots b_t \) of \(t \geq 1 \) elements in \(B \), \(D_{i_1}(b_1) \cdots D_{i_t}(b_t) \in M^m \) whenever \(i_1 + \cdots + i_t > m \).

Proof. There is an integer \(r \) such that if \(i > r \), then \(D_i(B) \subseteq M^n \). Let \(m = nr \). Then, if \(i_1 + \cdots + i_t > m \) either \(n \) of the \(i \)'s are different from zero or one of them is greater than \(r \). In either case \(D_{i_1}(b_1) \cdots D_{i_t}(b_t) \) is in \(M^n \).

To prove (iii) of Lemma 3 we simply observe that if \(D(a) \in M^t \) for \(a \) in \(S \) or in \(B \) then (8) is in \(M^n \). Statement (iv) is immediate.

Corollary 3.1. If \(D \in H_c(S[B], R) \) converges uniformly on \(S \), where \(B \) is a finite set and \(D(S[B]) \subseteq M^n \), then \(D \in H_u(S[B], R) \).

Corollary 3.2. Let \(M \) be a multiplicatively closed subset of \(S \) each element of which has an inverse in \(R \) and let \(\tilde{D} \in H(S_M, R) \) be the extension of \(D \in H(S, R) \). If \(D(S) \subseteq M \), it follows that

(i) if \(D \in H_c(S, R) \) then \(\tilde{D} \in H_c(S_M, R) \);
(ii) if \(D \in H_u(S, R) \) then \(\tilde{D} \in H_u(S_M, R) \);
(iii) if \(D \in H_t(S, R) \) then \(\tilde{D} \in H_t(S_M, R) \).

Proof. Let \(M^{-1} \) denote the set of inverses of the elements of \(M \). Then \(\tilde{D}(M^{-1}) \subseteq M \) in view of (6) and the assumption that \(D(S) \subseteq M \). Also, it follows from Lemma 4 and (6) that if \(D \in H_c(S, R) \) then \(\tilde{D} \) converges on \(M^{-1} \), and if \(\tilde{D} \in H_u(S, R) \) then \(\tilde{D} \) converges uniformly on \(M^{-1} \). If \(D \in H_t(S, R) \) it is apparent from (6) that \(D \) is strongly convergent on \(M^{-1} \). The observation that \(S_M = S[M^{-1}] \) and an appeal to Lemma 3 completes the proof.
The symbol V will represent a valuation ring having characteristic zero with residue field k of characteristic $p \neq 0$. Let π be a prime element of V and let e be the ramification of V, that is $pV = \pi^eV$, and we write $e = p^r$ where $(p, r) = 1$. Let (R, M) be a regular local ring containing V such that $\pi V = V \cap M$.

Lemma 5. Each D in $H_c(V, R)$ has the property $D(\pi V) \subset M^2$ and thus $H_c(V, R) = H^2_c(V, R)$.

Proof. For some positive integer t, $\pi V \subset M^t \setminus M^{t+1}$, i.e. $\pi V \subset M^t$ but $\pi V \notin M^{t+1}$. Thus $\pi \in M^t \setminus M^{t+1}$. Let i be the least integer such that $D_i(\pi) \notin M^2$. We assume $t > 1$. Now

$$D_{tr}(\pi^i) = [D_t(\pi)]^i + \sum_{i_1 + \cdots + i_r = tr, \text{ some } i_j < i} D_{i_1}(\pi) \cdots D_{i_r}(\pi).$$

Since $[D_t(\pi)]^i \in M^t \setminus M^{t+1}$ and the second term is seen to be in M^{t+1} we have $D_{tr}(\pi^i) \in M^t \setminus M^{t+1}$. Similarly,

$$(9) \quad D_{tr}(\pi^{p^r}) = [D_{tr}(\pi^i)]^{p^r} + \sum_{i_1 + \cdots + i_{ps} = p^tr, \text{ some } j, k} D_{i_1}(\pi^i) \cdots D_{i_{ps}}(\pi^i).$$

Again $[D_{tr}(\pi^j)]^{p^r} \in M^{p^r \setminus M^{p^r+1}}$ and the remaining term on the right of (9) is seen to be in M^{p^r+1} since each summand occurs a multiple of p times. We conclude from (9) that

$$D_{tr}(\pi^{p^r}) \in M^{p^r \setminus M^{p^r+1}}.$$

For some unit u in $V_p = un^{p^r}$ and

$$(10) \quad 0 = D_{tr}(p) = uD_{tr}(\pi^{p^r}) + \sum_{j=1}^{p^r-1} D_j(u)D_{tr-j}(\pi^{p^r}).$$

By an argument like that above applied to the right side of (10) we conclude that $D_{tr}(p) \in M^{p^r \setminus M^{p^r+1}}$ which is the desired contradiction.

If $t = 1$ then we observe as above that $D_1(\pi^i) \in M^1 \setminus M^{2}$ and hence that $D_{tr}(\pi^{p^r}) \in M^{p^r \setminus M^{p^r+1}}$. It follows that $D_{tr}(p) = D_{tr}(un^{p^r}) \notin M^{p^r+1}$; a contradiction. This proves Lemma 5.

Lemma 6. If D is in $H(V, R)$ and a is in V then $D_i(a^n) \subset M^i$ for $i < p^n - 1$.

Proof. We note that

$$D_i(a^n) = \sum_{i_1 + \cdots + i_{qs} = i} D_{i_1}(a) \cdots D_{i_{qs}}(a)$$

$$(11) \quad = C[p^n; q_1, \ldots, q_t][D_{i_1}(a)]^{q_1}, \ldots, [D_{i_r}(a)]^{q_t}$$

where the set i_1, \ldots, i_{qs} consists of q_r integers j_r for $r = 1, \ldots, t$ and $C[p^n; q_1, \ldots, q_t]$ is the indicated multinomial coefficient. Since $i < p^n - 1$, and hence $q_r < p^n - 1$ for at least one q_r, it follows that the maximum integer t such that $p^t|\pi^n$ for all q_r is less than $n - j$. Thus $p^t|C[p^n; q_1, \ldots, q_t]$. (Here we are using the fact that if s is the largest integer such that $p^s|\pi^n$ for all r then $p^n - s|C[p^n; q_1, \ldots, q_t]$.) It follows from (11) that $D_i(a^n) \subset M^i$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
We now make an additional assumption on \(V \) and \(R \), namely that \(R \) is complete in the \(M \)-adic topology and \(V \) is a complete subring with \(e = 1 \).

Theorem 4. Let \(S \) be a \(p \)-basis for \(k \) the residue field of \(V \) and let \(S \subset V \) be a set of representatives of the elements in \(S \). If \(f \) is a mapping of \(S \times I \) into \(R \) where \(I \) denotes the positive integers then

(a) There is one and only one \(D \in H(V, R) \) with the property \(D(s) = f(s, i) \) for (\(s, i \)) in \(S \times I \).

(b) \(D \) is in (i) \(H^m(V, R) \), (ii) \(H^N(V, R) \), (iii) \(H^N(V, R) \) if and only if \(D(S) \subset M \) and (i) \(D \) converges on \(S \), (ii) \(D \) converges uniformly on \(S \), (iii) \(D_i(S) \subset M^i \) for \(i = 1, 2, \ldots \).

Proof. In order to prove part (a) we consider \(V_0 \) the complete subring of \(V \) having residue field \(k_0 \), the maximal perfect subfield of \(k \). Since \(S \) is an algebraically independent set over \(k_0 \), \(S \) is algebraically independent over \(V_0 \). Thus by a standard Zorn's Lemma argument using [2, Theorem 2] we can define \(H \in H(V_0(S), R) \) by the conditions (i) \(H \) restricted to \(V_0 \) is the zero higher derivation and (ii) \(H_i(s) = f(s, i) \) for \(s \in S \) and \(i \in I \).

Let \(U \) be a basis for \(k \) as a linear space over \(k_0(S) \) and let \(U \) be a set of representatives in \(V \) of the elements in \(U \). We assume that \(1 \) is in \(U \).

The set \(U^{p^n} \) of \(p^n \)-th powers of elements of \(U \) is also a basis for \(k \) over \(k_0(S) \) [3, p. 347]. If \(V_0(S) \) is the ring of rational functions over \(V_0 \) in the elements of \(S \) then \(V_1 = V_0(S) \cap V \) is a valuation ring with residue field \(k_0(S) \). Thus, given \(a \in V \), there are elements \(a_1, \ldots, a_n \) in \(V_1 \) and \(u_1, \ldots, u_n \) in \(U \) such that

\[
a = \sum a_i u_i^{p^n}, \quad \text{mod } p^n.
\]

Moreover, the \(a_i \) are uniquely determined, \(\text{mod } p^n \), by the condition (12).

For \(i = 1, \ldots, m \) and \(a \in V \), let

\[
D^{(m)}(a + p^n V) = \sum H_i(a) u_i^{p^n} + M^m,
\]

where \(a = \sum a_i u_i^{p^n} \), \(\text{mod } p^n \), according to (12). The fact that the \(a_i \) are determined, \(\text{mod } p^n \), assures that \(D^{(m)} \) is a well defined map of \(V/p^n V \) into \(R/M^m \). We define the desired \(D \in H(V, R) \) by the coset intersection

\[
D_i(a) = \bigcap_{n > i} D_i^{(n)}(a + p^n V).
\]

The following equalities which will be verified in turn, permit us to conclude that \(D \) is a higher derivation. For \(A \) and \(B \) in \(V/p^n V \)

\[
D^{(m)}(A + B) = D^{(m)}(A) + D^{(m)}(B) \quad \text{for } i = 1, \ldots, m,
\]

\[
D^{(m)}(AB) = \sum_{f = 0}^{1} D^{(m)}(A) D^{(m)}(B)
\]

and for \(a \in V \) the following coset inclusion holds.

\[
D^{(m)}(a + p^n V) \supset D^{(m+1)}(a + p^{n+1} V).
\]
Statement (15) is clear from the definition. In order to establish (16) we let
\[A = \sum a_k u_k^{2^m} + p^mV \quad \text{and} \quad B = \sum b_k u_k^{2^m} + p^mV, \]
using (12). Thus
\[AB = \sum a_k b_k u_k^{2^m} + p^mV. \]

Using (12) we have
\[u_k u_j = \sum d_{kj} \mod pV. \]
Thus [2, Lemma 1],
\[u_k^{2^m} u_j^{2^m} = \sum_{t=0}^{3m-1} p^t \sum s_{k,t,i} c_{k,t,i}^{2^m-i} u_i^{2^m}, \mod p^{2m}V, \]
where \(s_{k,t,i} \) is a rational integer and \(c \in V_1 \). Substituting (19) into (19) we have
\[D^{(m)}(AB) = \sum H_i(\sum a_k b_k p^t s_{k,t,i} c_{k,t,i}^{2^m-i}) u_i^{2^m} + M^m. \]
Since \(p \) and \(s_{k,t,i} \) are rational integers \(H_i(p^t) = H_i(s_{k,t,i}) = 0 \), for all \(i \). Also, by Lemma 6, \(H_i(c_{k,t,i}^{2^m-i}) \) is in \(M^m \) if \(t < m \), since \(i \leq m \). Thus, mod \(M^m \), we have
\[H_i(\sum a_k b_k p^t s_{k,t,i} c_{k,t,i}^{2^m-i}) = \sum H_i(a_k b_k) p^t s_{k,t,i} c_{k,t,i}^{2^m-i} = \sum_{t=0}^{m-1} H_i(a_k) H_i(b_k) p^t s_{k,t,i} c_{k,t,i}^{2^m-i}. \]
Thus, substituting this last expression into (20) and then using (19) we find that (20) reduces to \(\sum H_i(a_k) H_i(b_k) u_i^{2^m} + M^m \) from which (16) follows.

Relation (17) can be verified as follows. Using (12) for \(n = 1 \) we have
\[u_k^{2^m} = \sum a_k u_i, \mod p, \] the \(a_i \) being in \(V_1 \). Thus [2, Lemma 1]
\[u_k^{2^{m+1}} = \left[\sum a_k u_i \right]^{2^m} = \sum_{t=0}^{3m-1} p^t \sum s_{k,t,n} c_{k,t,n}^{2^m-i} u_n^{2^m}, \mod p^{2m}V, \]
Again, \(s_{k,t,n} \) is a rational integer and \(c_{k,t,n} \in V_1 \). Thus if \(a + p^m + 1 \)
\[D^{(m+1)}(a + p^m + 1) = \sum H_i(a_k) u_i^{2^m} + M^{m+1} \]
(22)
\[D_i^{(m)}(a + p^m V) = \sum H_i(a_k) \sum_{t=0}^{3m-1} p^t \sum s_{k,t,n} c_{k,t,n}^{2^m-i} u_n^{2^m} + M^{m+1}. \]
But, \(a + p^m V = \sum (a_k \sum p^t s_{k,t,n} c_{k,t,n}^{2^m-i} u_n^{2^m} + p^m V \)

Relation (17) then follows in view of (22).

Since \(\bigcap_{m=1} M^m = 0 \), \(D_i \) as defined by (14) is a uniquely determined element of \(R \). Properties (15) and (16) assure that conditions (i) and (ii) of Definition 1 hold mod \(M^m \) for all \(m \). Thus \(D \) is a higher derivation.

In order to show that \(D \) is an extension of \(H \) we note that if \(a \in V_1 \) then
\[D_i^{(m)}(a) = H_i(a) + M^m \] since \(1 \in U_m \). Thus \(D_i(a) = \bigcap_m D_i^{(m)}(a + p^m V) = H_i(a). \)
It remains to show that D is determined by $W=\{D_i(s)\}_{i=1,\ldots,n}$. Certainly, the restriction of D to $V_1 \subset V_0(S)$ is completely determined by W since $D_i(a) = 0$ for $i > 0$ and $a \in V_0$ by Lemma 6 and the fact that V_0 is for each $n > 0$ the completion of the subring generated by the p^nth powers of elements in V_0. Let a be any element in V. By (12) $a = \sum a_i u_i^{p^m}$, mod p^{3m+1}, where the a_i are in V_1. If $j < m$,

$$D_i(\sum a_i u_i^{p^m}) = \sum D_i(a_i) u_i^{p^m}, \quad \text{mod } M^m,$$

by Lemma 6. Hence $D_i(a) = \sum D_i(a_i) u_i^{p^m}$, mod M^m. Thus D is determined, mod M^m by its restriction to S. But m is arbitrary. It follows that D is uniquely determined by its action on S. This proves (a) of Theorem 4.

If D in $H(V, R)$ converges then $D(V) \subset M$. Hence the condition $D(S) \subset M$ is necessary for D to be in $H^*_0(V, R)$, $H^*_0(V, R)$ or $H^*_M(V, R)$. The remaining condition is clearly necessary in each case.

Let D in $H(V, R)$ be such that $D(S) \subset M$ and $\sum D_i(s)$ converges for all $s \in S$. To show that D is in $H^*_M(V, R)$ it is only necessary to show that D converges in view of Lemma 5. Given $n > 0$. By Lemma 6 $D_i(V^{p^n+1}) \subset M$ for $j \leq n$. But $V = V^{p^n+1} [S] + pV$ and hence $D_i(V) \subset M$ or

$$D(V) \subset M.$$

Lemma 7. Let (T, M) be a quasi-local ring with residue field having characteristic $p \neq 0$. Let S be a subring of T. If $D \in H(S, T)$ maps S into M then

$$D(S^{p^n}) \subset M^{n+1}, \quad \text{for } n = 1, 2, \ldots.$$

Proof. We argue by induction on n using

$$D_i(a^p) = p a^{p-1} D_i(a) + \sum_{i_1 + \cdots + i_p = i} D_i_1(a_{i_1} \cdots a_{i_p}).$$

Since at least two of the integers i_1, \ldots, i_p are different from zero $D_i(a^p)$ is in M^2. If in (25) $a = b^p$ then, by induction, $D_i(b^p) \in M^{n+1}$ and hence $D_i(b^{p^n+1}) \in M^{n+2}$.

By relation (23) and Lemma 7 then $D(V^{p^n}) \subset M^{n+1}$. Given a in V and $t > 0$, $a = f(s_1, \ldots, s_t)$, mod p^tV, where $f \in V^{p^t}[X_1, \ldots, X_q]$ has degree $< p^t$ in each X_i, and $\{s_1, \ldots, s_t\} \subset S$. We choose n so that if $i > n/qp$ then $D_i(s_i) \in M^t$ for $j = 1, \ldots, q$.

$$D_i(b s_1^{p^n} \cdots s_t^{p^n}) = \sum_{i_0 + \cdots + i_q = i} D_{i_0}(b) D_i(s_1) \cdots D_{i_q}(s_q).$$

If $i > n$ in (26) either $i_0 > 0$ or $i_j > n/qp$ for some $j > 0$. Thus, since $b \in V^{p^t}$, $D_0(b) D_i(s_1) \cdots D_{i_1} + \cdots + D_{i_q}(s_q)$ is in M^t. Since every term in $V^{p^t}[s_1, \ldots, s_t] \subset M^t$ and of the type treated in (26) it follows that, if $i > n$, $D_i(a) \in M^t$. Thus D converges.

If D converges uniformly on S then the n of the previous paragraph can be chosen so that if $i > n/qp^t$ then $D_i(S) \subset M^t$, from which it follows that $D_i(V) = D_i(V^{p^t}[S] + p^tV) \subset M^t$.

Thus $D \in H^*_M(V, R)$. Similarly, if $D_i(S) \subset M^t$ a like argument leads to the conclusion that $D_i(V) \subset M^t$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Theorem 5. If \((R, M)\) is a complete local ring with residue field \(k\) having characteristic \(p \neq 0\) then \(H_c(R, R) = H_d(R, R)\) if \(k\) has a finite \(p\)-basis. If \(R\) is regular \(H_c(R, R) = H_d(R, R)\) only if \(k\) has a finite \(p\)-basis.

Proof. As in Theorem 4 we let \(S\) be a set of units in \(R\) which map biuniquely onto a \(p\)-basis \(\bar{S}\) for \(k\) under the canonical map of \(R\) onto \(k\). It is assumed that \(\bar{S}\) is finite. Let \(\mathcal{M}\) be the set of multiplicative representatives of the element in \(k_0\), the maximal perfect subfield of \(k\). We choose an arbitrary \(D\) in \(H_c(R, R)\) and observe first that \(D(\mathcal{M}) = \{0\}\), by Lemma 7 since each \(a\) in \(\mathcal{M}\) is a \(p^m\)th power for all \(m\). Thus if \(T\) is the subring of \(R\) generated by \(\mathcal{M}\) then \(D|_T\), the restriction of \(D\) to \(T\) is the zero higher derivation. By Corollary 3.1 \(D|_T\) is uniformly convergent.

Let \(U\) be a subset of \(R\) which maps biuniquely onto \(\bar{U}\) a basis for \(k\) as a linear space over \(k_0(S)\). As we have observed before the set \(U_n\) of \(p^n\)th powers of the elements in \(U\) maps onto a basis for \(k\) over \(k_0(\bar{S})\).

Let \(t > 0\) be fixed. If \(M = \sum_{i=1}^t w_iR\), then \(a \in R \Rightarrow a = \sum_i f_i u_i^t + \mu, \quad \mu \in M^t, \quad f_i \in T[S][w_1, \ldots, w_s]\).

Hence applying Corollary 3.1 to obtain \(D|T[S][w_1, \ldots, w_s]\) uniformly convergent, we pick an \(n\) such that \(j > n\) implies

\[D_j(T[S][w_1, \ldots, w_s]) \subset M^t.\]

Thus since \(D(M^t) \subset M^t, D_j(a) = D_j(\sum_i f_i u_i^t) + D_j(\mu) \in M^t.\)

Since the choice of \(n\) depends only on \(t, S, \) and \(\{w_1, \ldots, w_s\}\) it follows that \(D\) converges uniformly on \(R\). Inclusion the other way is obvious so the first part of Theorem 5 is proved.

In proving the rest of Theorem 5 we will have use for the following proposition whose proof is standard and will be omitted.

Proposition 2. Let \(S\) be a subring of a complete local ring \((R, M)\) and let \(D\) be in \(H(S, R)\). If \(D\) is continuous in the induced topology then \(D\) extends and in only one way to a higher derivation \(D^*\) on \(S^*\) the completion of \(S\) in \(R\). If \(D\) is convergent so is \(D^*\). If \(D\) is uniformly convergent so is \(D^*\). If \(D(S) \subset M\) then \(D^*(S^*) \subset M\).

Assuming \(R\) to be regular we consider the converse. If \(R\) has characteristic \(p\) then \(R\) is a power series ring \(k[[X_1, \ldots, X_n]]\) in a finite number of indeterminates \(X_1, \ldots, X_n\) over its residue field \(k\). We assume that \(k\) possesses a \(p\)-basis \(S\) with infinite cardinal. Let \(\{s_i\}_{i=1}^\infty\) be a countable sequence of elements in \(S\). A higher derivation \(D^{(i)}\) in \(H(k, k[[X_1, \ldots, X_n]])\) is uniquely determined by the conditions (i) \(D^{(i)}(s_i) = \delta_{i,j}\) (ii) \(D^{(i)}(s_j) = 0\) for \(j \geq 1\) and \(s \in S, s \neq s_i\) [2, Theorem 1]. The theorem referred to here applies to \(D \in H(k, k)\) but the proof applies to the case in which...
the range of D is a ring containing k. Let $H^{(i)}$ be defined by $H^{(i)}_{nt} = X_n^i D^{(i)}$; $n \geq 1$, and $H^{(0)}_{nt} = \theta$, for m not a multiple of i, θ being the zero map. $H^{(i)}$ so defined is a convergent higher derivation. $H^{(i)}$ is extended to $H^{(i)}$ on $k[X_1, \ldots, X_n]$ by the condition $H^{(i)}_{nt}(X_t) = 0$ for $j \geq t$, and $t = 1, \ldots, n$. $H^{(i)}$ extended is again, by Lemma 3, a convergent higher derivation. Finally, let $E = H^{(1)} \circ H^{(2)} \circ \cdots \circ H^{(n)}$. Thus $E_n = (H^{(1)} \circ \cdots \circ H^{(n)})_n$ since $H^{(m)}_{nt} = \theta$ for $m < i$. It follows readily that E is a well-defined higher derivation, and is clearly convergent. Let E^* represent the extension of E to $k[[X_1, \ldots, X_n]]$. Again by Proposition 2, E^* is a convergent higher derivation. It follows immediately from the definition of E^* that $E^*(s_t)$ is in M and not in M^2. Hence, E^* is not uniformly convergent.

Assume now that R has characteristic zero. Then $R = R_s[\pi]$ where

$$R_1 = V[[X_1, \ldots, X_n]]$$

is a power series ring in n indeterminates over an unramified v-ring V and π is a root of an Eisenstein polynomial f over R [1, Theorem 1].

The following facts will be useful. Let K be the quotient field of R_1.

(A) A given higher derivation on R_1 has a unique extension to a higher derivation on K. This follows from Lemma 2.

(B) A higher derivation D on K has a unique extension \overline{D} to $K[\pi]$ [2, Theorem 3]. If D is convergent on K, \overline{D} will be convergent if and only if $\sum \overline{D}(\pi)$ converges. If $D(R_1) \subset R$ then $\overline{D}(R) \subset R$ if and only if $\overline{D}(\pi) \in R$.

Let the minimal polynomial of π over R, be $f = X^e + f_{e-1} X^{e-1} + \cdots + f_0$ and let f' denote the ordinary derivative of f.

Lemma 8. If $f'(\pi) \in M^fM^{s+1}$ and $D \in H_e(R_1, R_1)$ is such that $D(f_j) \in M^{st+j}$ for $j = 0, \ldots, e-1$ then the extension of D to R will be convergent and will map R into R.

Proof. We choose the same symbol D for the extension of the given higher derivation. Application of the defining properties of a higher derivation to $D(f(\pi)) = 0$ yields

$$f'(\pi) D(\pi) = -f^{D_1}(\pi) - \sum_{j_1 + \cdots + j_e = t; 0 \leq j_e < 1} D_{j_1}(\pi) \cdots D_{j_e}(\pi)$$

$$- \sum_{i=1}^{n-1} \sum_{j_0 + \cdots + j_i = t; 0 \leq j_i < 1} D_{j_0}(f_0) D_{j_1}(\pi) \cdots D_{j_i}(\pi)$$

(27)

where $f^{D_1} = D((X_{e-1})^e + \cdots + D(f_0))$. For $i = 1$ we have the familiar formula $D_1(\pi) = f^{D_1}(\pi)|f'(\pi)$ and hence, since $D_1(f_j) \in [f'(\pi)]^2 M^{t+j}$ for $j = 0, \ldots, e-1$ we have $D_1(\pi) \in f'(\pi) M^t$. If, for $i < r$, $D_i(\pi) \in f'(\pi) M^t$ then by (27) $D_i(\pi) \in f'(\pi) M^t$. Thus $D(R) \subset R$. In order to show that $\sum D_i(\pi)$ converges we assume that for any integer s, $1 < s < r$, there is an integer $N_s > eN_{s-1}$ such that if $i > N_s$ then $D_i(f_j) \in M^{st}$ for $j = 0, \ldots, n$ and $D_i(\pi) \in M^{(s+1)t}$. Then since D converges on R, there is an N such that if $i > N$ then $D_i(f_j) \in M^{st}$ for all j. Let N_r be the larger of eN and eN_{r-1}. It follows then from (27) that for $i > N_r$, $D_i(\pi) \in M^{(r+1)t}$ and the lemma is proved.
If \(S \) is a set of representatives in \(V \) of a \(p \)-basis for its residue field \(k \) then
\[V = V^{p^m}[S] + p^mV \text{ for any } m > 0. \]
Thus there is a finite subset \(S_1 \) of \(S \) such that \(f_j \in V^{p^m}[S_i] + p^mV \). Assuming \(S \) to be an infinite set we enumerate a countable subset \(\{s_i\}_{i=1}^{\infty} \) of \(S - S_1 \) and we define a higher derivation \(D \in H_c^M(V, R) \) by
\[D(s_j) = \delta_{ij}[f'(\pi)]^i, \]
for \(i, j > 0 \), and \(D(s) = 0 \) for \(s \in S - \{s_i\}_{i=1}^{\infty} \). By Theorem 4, \(D \) is in \(H_c^M(V, R) \) and is not in \(H_c(V, R) \) since \(D \) does not converge uniformly on \(S \). We extend \(D \) to \(V[X_1, \ldots, X_n] \) and hence, by Proposition 2, to \(R_1 \) by the requirement \(D(X_i) = 0 \) for \(i = 1, \ldots, n \), using the same symbol for the extended map. Since \(\sum D_i(X_j) \) converges for \(j = 1, \ldots, n \), \(D \in H_c^M(R_1, R) \), \(D \notin H_n(R_1, R) \). By construction of \(D \) the conditions of Lemma 8 are met and hence \(D \) extends to a higher derivation in \(H_c(R, R) \) which is not in \(H_n(R, R) \).

The following lemma is needed in order to obtain an analogue to Theorem 5 in case the residue field \(R \) has characteristic zero.

Lemma 9. Let \(k_0, k_1, \) and \(k \) be fields such that \(k_0 \subseteq k_1 \subseteq k \). Let
\[D \in H_c(k_1, k[[X_1, \ldots, X_n]]) \]
and assume \(k_1 \) separable algebraic over \(k_0 \). If \(D \) restricted to \(k_0 \) is uniformly convergent then \(D \) is also uniformly convergent. If \(D \in H(k_1, k[[X_1, \ldots, X_n]]) \) is convergent \((M \) convergent) on \(k \) then
\[D \in H_c(k_1, k[[X_1, \ldots, X_n]]) \quad (D \in H_c^M(k_1, k[[X_1, \ldots, X_n]])). \]

Proof. Let \(u \) be in \(k_1 \) and let \(f \) be its minimal polynomial over \(k_0 \). If
\[f = X^n + \sum_{i=0}^{n-1} f_i X^i \]
then, as in the proof of Lemma 8,
\[f'(u) D_i(u) = -f D_i(u) - \sum_{j_1 + \cdots + j_n = i; \ 0 \leq j_l \leq i} D_{j_1}(u) \cdots D_{j_n}(u) \]
\[- \sum_{l=0}^{n-1} D_{j_0}(f_l) D_{j_1}(u) \cdots D_{j_l}(u) \]
for \(i = 1, 2, \ldots \).

Using (28) and induction on \(i \) we observe below that \(D_i(u) \) is a sum of terms of the form
\[b D_{i_1}(a_1) \cdots D_{i_r}(a_r), \quad i_1 + \cdots + i_r = i. \]

Relation (28, i) exhibits a representation of \(D_{i_1}(u) \) as a sum of terms of the form (29, 1). Assuming that, for \(i < j \), \(D_i(u) \) is a sum of the form (29, i) we substitute these sums in (28, j) and conclude that \(D_j(u) \) is of the same form. The first assertion of Lemma 9 now follows from Lemma 4.

Let \(D \in H(k_1, k[[X_1, \ldots, X_n]]) \) be convergent on \(k_0 \) and let \(u \) be as above. Now \(f'(u) D_i(u) \) was observed to be a sum of terms of the form (29, i) from which fact
one concludes that \(\sum D_i(u) \) converges if \(D \) converges on \(k_0 \). The remaining statement is obvious.

Theorem 6. If \((R, M) \) is a complete regular local ring having residue field \(k \) with characteristic zero then \(H_c(R, R) = H_u(R, R) \) if and only if \(k \) has finite transcendency degree over its prime field.

Proof. In this case \(R \) is a power series ring \(k[[X_1, \ldots, X_n]] \) in \(n \)-indeterminates over \(k \). Let \(k_0 \) be the prime field of \(k \) and let \(B \) be a transcendency basis of \(k \). Then, by Proposition 2 and Lemma 9, it is sufficient to show that \(H_c(k_0(B), R) = H_u(k_0(B), R) \) if and only if \(B \) is finite. Since the first nonzero mapping of a higher derivation is a derivation and there are no nonzero derivations with domain \(k_0 \) it follows that every higher derivation on \(k \) is trivial on \(k_0 \). Hence if \(D \in H_c(k_0(B), R) \) then \(D \) is uniformly convergent on \(k_0 \) and, if \(B \) is finite, \(D \) is uniformly convergent on \(k_0[B] \) by Lemma 1 and Corollary 3.1, and hence is uniformly convergent on \(k_0(B) \) by Corollary 3.2.

If \(B \) is infinite we choose a countable subset \(\{b_i\}_{i=1}^\infty = B' \) in \(B \) and define a \(D \in H_M(k_0(B), R) \) by the conditions \(D_i(b_j) = \delta_{ij}X_j \), for \(i, j \geq 1 \), and \(D_i(b_j) = 0 \) for \(i \geq 1 \) and \(b \) in \(B \), \(b \) not in \(B' \). \(D \) is \(M \)-convergent on \(k_0 \) and on \(B \) and hence \(D \) is in \(H^M(k_0(B), R) \) by Lemma 3. Since \(D_i(b_j) \notin M^2 \) for all \(j \), \(D \) is not uniformly convergent.

References

Florida State University, Tallahassee, Florida