INERTIAL AUTOMORPHISMS OF A CLASS OF WILDLY RAMIFIED v-RINGS

BY
NICKOLAS HEEREMA(°)

I. Introduction. Let R be a ramified v-ring with ramification e. That is, R is a complete, discrete, rank one, valuation ring having characteristic zero with residue field k of characteristic $p \neq 0, 2$ and pR is the eth power of the maximal ideal M of R. Let \mathfrak{O} represent the group of automorphisms of R, e being the identity map. Then, for $i > 0$, $\mathfrak{O}_i = \{a | a \in \mathfrak{O}; a = e, \text{mod } M^i\}$ and $\mathfrak{S}_i = \{a | a \in \mathfrak{O}_i, a(m) - m \in M^{i+1} \text{ for } m \in M\}$. The ramification groups \mathfrak{O}_i and \mathfrak{S}_i are invariant in \mathfrak{O}. The object of this paper is to evaluate the factor groups of the series (1) of ramification groups in that case in which $e = p$. A second objective is the determination of those automorphisms in \mathfrak{O}_1 which are derivation automorphisms (see below).

Neggers has shown [3, Theorem 6] that for any e and $i \geq (e+p)/(p-1)$, $\mathfrak{O}_i/\mathfrak{O}_{i+1}$ is isomorphic to $D(R)/\pi D(R)$ where $D(R)$ is the additive group of derivations on the ring R and $\pi D(R) = \{\pi d | d \in D(R)\}$ where π is a prime element in R. In addition he proved that $\mathfrak{S}_i/\mathfrak{O}_{i+1}$ is isomorphic to the additive group of those derivations on k which lift to R where again $i \geq (e+p)/(p-1)$. The map used by Neggers to evaluate $\mathfrak{O}_i/\mathfrak{O}_{i+1}$ also shows that if $i \geq (e+p)/(p-1)$, then $\mathfrak{O}_i/\mathfrak{S}_i$ is isomorphic to $D(R)/D^*(R)$ where $D^*(R) = \{d | d \in D(R), d(\pi) \in \pi R\}$ [3, proof of Theorem 6]. The principal tool of this investigation is the convergent higher derivation [2]. Let $D = \{D_i\}_{i=1}^{\infty}$ be a higher derivation on $R(D(R) \subset R$ for $i > 0)$. D is convergent if, for $a \in R$, $\sum D_i(a)$ is a convergent series in the π-adic topology. If D converges the map $a_D: a \rightarrow \sum_{i=0}^{\infty} D_i(a)(D_0(a) = a)$ is an inertial automorphism (see Theorem B). The group \mathfrak{O}_D of all derivation automorphism a_D is an invariant subgroup of \mathfrak{O}.

Throughout this paper R will denote a v-ring in R such that $[R:R] = e$, and R is unramified. Thus R has the same residue field k as R. For a in R, \overline{a} will denote the image of a under the natural map of R onto k, π always represents a prime element in R. We have

$$\pi^e + pu = 0, \quad \overline{u} \neq 0. \tag{2}$$

If $e = p$ and $\overline{u} \in k^p$ then π can be chosen so that

$$\pi^p + p(1 + \overline{u}v) = 0, \quad t > 0, \quad \overline{v} \neq 0, \tag{3}$$

or $\pi^p + p = 0$. We note that the conditions

$$\overline{u} \notin k^p; \quad t = p \quad \text{and} \quad \overline{v} \notin k^p; \quad \text{as well as} \quad \overline{v} \text{ if } 1 \leq t < p$$

Presented to the Society, September 1, 1967; received by the editors February 16, 1967.

(°) This research supported by NSF GP-4007.
are all independent of the choice of \(\pi \), assuming (3) to be satisfied for all but the first listed. Throughout this paper the symbols \(u \) and \(v \) will represent the quantities given in (2) and (3). The considerations (4) determine, to a large extent, the structure of the groups (1) as is seen in the following two theorems which summarize the results of this study. \(\Theta(R_\pi; R) \) is the group of automorphism of \(R_\pi \) over \(R \).

Theorem 1. Every inertial automorphism on \(R_\pi \) is a derivation automorphism, i.e. \(\Theta_1 = \Theta_D \), unless \(\bar{u} \in k^p \) and \(t = p - 1 \), in which case the following are equivalent.

(a) \(v \) is a \((p-1)\)th root in \(k \).
(b) \(R_\pi \) is Galois over \(R \).
(c) \(\Theta_2 \neq \Theta_2 \).
(d) \(\Theta_2 | \Theta_2 \) is the group of order \(p \).

If \(R_\pi \) is Galois over \(R \) then \(\Theta(R_\pi; R) \subset \Theta_D \) if and only if \(\bar{v} \notin k^p \). In any case, \(\Theta_1 = \Theta_D \cdot \Theta(R_\pi; R) \).

Theorem 2. If \(\bar{u} \notin k^p \) then for \(i \geq 1 \), \(\Theta_i / \Theta_{i+1} \) is isomorphic to the subgroup \(\bar{D} \) of those \(\delta \in D(k) \) which lift to \(R_\pi \). Also, \(\bar{D} = \{ \delta \mid \delta \in D(k), \delta(\bar{u}) = 0 \} \). In this case \(\Theta_i / \Theta_{i+1} \) is isomorphic to \(k^+ \), the additive group of \(k \).

If \(\bar{u} \in k^p \), then for \(i \geq 1 \), \(\Theta_i / \Theta_{i+1} \) is isomorphic to \(D(k) \) unless \(t = p \) and \(i = 1 \). If \(t = p, \Theta_i / \Theta_{i+1} \) is isomorphic to the subgroup of those \(\delta \in D(k) \) such that \(\delta(\bar{v}) = 0 \). Also, \(\Theta_i = \Theta_i, i \geq 1 \), unless \(t = p - 1, i = 2 \) and one of the four equivalent conditions of Theorem 1 holds.

By Neggers’ results referred to above [3,’proof of Theorem 6] we have

Corollary. \(\mathcal{D}(R_\pi) / \mathcal{D}^*(R_\pi) \) is isomorphic to \(k^+ \) if \(\bar{u} \notin k^p \) and is trivial if \(\bar{u} \in k^p \).

II. Proofs. For \(S \) a subring of \(R_\pi \), the symbols \(\mathcal{H}(S, R_\pi), \mathcal{H}(S, R_\pi) \) and \(\mathcal{H}_D(S, R_\pi) \) will stand for the set of all higher derivations, all convergent higher derivations, and all uniformly convergent higher derivations with domain \(S \) and range \(R_\pi \). We quote the following two theorems which will be used repeatedly. Theorem A provides the necessary freedom in the construction of \(D \in \mathcal{H}_D(R_\pi, R_\pi) \). Theorem B implies that if \(D \in \mathcal{H}_D(R_\pi, R_\pi) \), then \(\alpha_D \) is indeed an inertial automorphism.

Theorem A [2, Theorem 4]. Let \(\mathcal{F} \) be a \(p \)-basis for \(k \) and let \(\mathcal{S} \subset R \) be a set of representatives of the elements of \(\mathcal{F} \). If \(I \) is the set of positive integers and \(f \) is a mapping from \(\mathcal{S} \times I \) into \(R_\pi \) then there is one and only one \(D \in \mathcal{H}(R, R_\pi) \) such that \(D(s) = f(s, i) \) for all \(s \in \mathcal{S} \) and \(i \in I \). Moreover, \(D \) converges (uniformly) if and only if \(D \) converges (uniformly) on \(\mathcal{S} \).

Theorem B [2, Lemmas 1 and 5]. If \(D \) is in \(\mathcal{H}_D(R_\pi, R_\pi) \) then \(D(s) = \pi R_\pi \) and \(D(\pi R_\pi) = \pi^2 R_\pi \) for \(i > 0 \).

Theorems 1 and 2 will be proved by means of a series of lemmas.
Lemma 1. If \(\mathcal{P} \) is a set of representatives in \(R \) of a \(p \)-basis \(\mathcal{F} \) for \(k \) and \(D \) in \(\mathcal{H}(R, R_e) \) is such that \(D_j(\mathcal{P}) \subset \pi^j R_e \subset R_e \), \(j \geq 1 \), then \(D(R) \subset \pi^j R_e \) where

\[
q_j = \min_{t_1 + \cdots + t_i = 0} (t_1 + \cdots + t_i), \quad i \geq 1.
\]

Proof. For a given \(i \) we choose \(n \) sufficiently large so that \(D_j(\pi^n) \subset \pi^q R_e \) for \(j = 1, \ldots, i \) [2, Lemma 6] where \(\pi^n \) is the subring of \(R \) generated by the \(p^n \)th powers of elements in \(R \). Since every element in \(k \) has a representative in \(R^n[\mathcal{F}] \), it follows that \(R = R^n[\mathcal{F}] + \pi^n R \). If \(b = a s_1, \ldots, s_i \) where \(a \in R^n \) and \(s_1, \ldots, s_i \in \mathcal{F} \) then

\[
D_i(b) = \sum_{t_0 + \cdots + t_i = 1} D_{t_0}(a) D_i(s_1), \ldots, D_i(s_i)
\]

is seen to be in \(\pi^q R \) and hence, since \(D_j(\pi^n) = 0 \) for all \(j \), \(D(R) \subset \pi^q R_e \).

Let \(a \), an automorphism of \(R_e \), be in \(\mathcal{D}_i \), \(i \geq 1 \). Then \(a(a) = a + \pi^q a^*(a) \) and the mapping \(a^* \) induces a derivation \(\delta_a \) on \(k \). The mapping

\[
\phi_i: \alpha \rightarrow \delta_a
\]

is a homomorphism of \(\mathcal{D}_i \) into \(\mathcal{D}(k) \) with kernel \(\mathcal{D}_i + 1 \).

Lemma 2. If an automorphism \(\alpha \) of \(R_p \) is in \(\mathcal{D}_i \), then \(\delta_a(u) = 0 \). If \(\pi^p + p(1 + \pi^p v) = 0 \), then \(\delta_a(v) = 0 \) for \(\alpha \) in \(\mathcal{D}_i \).

Proof. Since \(\alpha(\pi) = \pi \in \pi^{i+1} R_p \) it follows that \(\alpha(\pi^p) - \pi^p \in \pi^{i+1} R_p \). Thus by (2) \(\alpha(u) = u \) is in \(\pi^{i+1} R_p \) or \(\alpha(u) = \pi R_p \) which implies \(\delta_a(u) = 0 \). In the remaining case let \(\alpha(\pi) = \pi + \pi^2 b \). Then \(\alpha(\pi^p) - \pi^p \equiv \pi^2 b^p \), mod \(\pi^{2p+1} R_p \), and \(\alpha(p(1 + \pi^p v)) - p(1 + \pi^p v) \equiv p\pi^{p+1} a^*(v) \), mod \(\pi^{2p+2} R_p \). Hence \(b \in \pi R_p \) and it follows that \(\alpha^*(v) \in \pi R_p \) or \(\delta_a(v) = 0 \).

Given \(D \) and \(H \) in \(\mathcal{H}(R_e, R_e) \), \(D \circ H \) in \(\mathcal{H}(R_e, R_e) \) is given by

\[
(D \circ H)_i = \sum_{j=0}^{i} D_i H_{i-j}.
\]

\(\mathcal{H}(R_e, R_e) \) is a group with respect to this composition and \(\mathcal{H}(R_e, R_e), \mathcal{H}_{\pi}(R_e, R_e) \) are subgroups [2, Theorems 1, 2]. Moreover, one can verify directly that, for \(D \) and \(H \) in \(\mathcal{H}(R_e, R_e) \), \(\alpha \circ D = \alpha \circ H \).

Lemma 3. Let \((D^{(a)})_i \) be such that \(D^{(a)}(R_e) \subset \pi^i R_e \), \(i \geq 1 \), \(n \geq 1 \), and \(\lim_n s_n = \infty \). Let \(\alpha_a = \alpha a^{(1)}, \ldots, \alpha a^{(n)} \) and \(D^{(a)} = D^{(1)} \cdots D^{(n)} \). Then \(\lim_n \alpha_a(a) = \lim_n \alpha a^{(i)}(a) \) exist for all \(i > 0 \) and \(a \in R_e \). Moreover, \(\alpha : a \rightarrow \lim_n \alpha a(a) \) is an automorphism, \(D = \{D_i\} \) is in \(\mathcal{H}(R_e, R_e) \) where \(D_i(a) = \lim_n \alpha a^{(i)}(a) \) and \(\alpha = \alpha a \). If \(D^{(a)} \in \mathcal{H}_{\pi}(R_e, R_e) \), then \(D \in \mathcal{H}_{\pi}(R_e, R_e) \).

Proof. By definition of product in \(\mathcal{H}(R_e, R_e) \) we have

\[
D^{(m+1)}(a) - D^{(m)}(a) = \sum_{t_1 + \cdots + t_{m+1} = n; t_{m+1} \neq 0} D^{(1)} \cdots D^{(m+1)}(a),
\]
the right side of which is in \(\pi^{n+1}R_e \) since for \(D \in \mathcal{H}_e(R_e, R_e) \), \(D(\pi^nR_e) \subset \pi^nR_e \) for all \(i \) and \(n \) by Theorem B. Thus, \(\alpha_{n+1}(a) - \alpha_n(a) = \sum_{i=0}^{\infty} \mathcal{D}^{i+1}(a) - \sum_{i=0}^{\infty} \mathcal{D}^i(a) \in \pi^{n+1}R_e \). The rest of the lemma follows directly.

Since \(R_e \) is totally ramified over \(R \) and \([R_p : R] = p \) then \(R_p = R[\pi] \) and the minimal polynomial \(f(x) \) of \(\pi \) over \(R \) is an Eisenstein polynomial, that is,

\[
f(x) = x^p + p \alpha_{p-1} x^{p-1} + \cdots + p \alpha_1 x + p \alpha_0
\]

and \(\alpha_0 \) is a unit. Clearly, \(\alpha_0 = \bar{u} \) (see (2)). Also, if \(\bar{u} \in k^p \) then \(\alpha_0 = b^p + pc \) where \(b \) and \(c \) are in \(R \). By replacing \(\pi \) with \(b^{-1} \pi \) we can assume that

\[
a_0 = 1 + pb_0.
\]

We note next that every \(D \in \mathcal{H}(R, R_e) \) extends uniquely to a higher derivation \(D \) of the quotient field of \(R_e \). Also, \(D(R_e) \subset R_e \) if and only if \(D(\pi) \in R_e \). If \(D \) converges on \(R \), \(D \) will converge on \(R_e \) if and only if \(D \) converges at \(\pi \) [2, Lemma 3].

Let \((r, s)\) denote an ordered set of \(r \) nonnegative integers whose sum is \(s \) and let \(|(r, s)|\) represent the largest integer in \((r, s)\). We let \(\sum_{(a, \bar{a})} D(a_1, \ldots, a_n) \) denote the sum of all products \(D_1(a_1)D_2(a_2) \cdots D_n(a_n) \) such that \(i_1 + \cdots + i_n = s \) and \(i_j \geq 0 \). Also, \(f'(x) \) and \(f^{(p)}(x) \) represent respectively the ordinary derivative of \(f \) and the polynomial obtained by replacing each coefficient in \(f \) with its image under \(D_i \). With these conventions it is useful to write the expression for \(D_i(\pi) \) derived from \(D_i(f(\pi)) = 0 \) as follows:

\[
f'(\pi)D_i(\pi) = f^{(p)}(\pi) + \sum_{(p, \bar{p}); |(p, \bar{p})| < 1} D(\pi, \ldots, \pi) + \sum_{(j, \bar{p}); |(j, \bar{p})| < 1} D(a_j, \pi, \ldots, \pi).
\]

Let \(v \) represent the exponential valuation on \(R_p \). Note that \(p \leq v(f'(\pi)) \leq 2p - 1 \).

Lemma 4. A given \(\delta \in \mathcal{D}(k) \) lifts to \(d \in \mathcal{D}(R_p) \) if and only if \(\delta(\bar{u}) = 0 \).

Proof. A derivation \(d \in \mathcal{D}(R_p) \) induces a derivation on \(k \) under the natural map of \(R_p \) onto \(k \) only if \(d(\pi) \subset \pi R_p \). But \(d(f(\pi)) = 0 \) means \(d(\pi) = -f'(\pi)f'(\pi) \). Thus \(f'(\pi) \in \pi^{p+1}R_p \) which means \(d(\alpha_0) \in \pi R_p \) and, hence, if \(d \) induces \(\delta \) on \(k \), \(\delta(\alpha_0) = \delta(\bar{u}) = 0 \). Conversely, every \(\delta \in \mathcal{D}(k) \) lifts to \(d' \) on \(R \) [1, Theorem 1]. If \(\delta(\bar{u}) = 0 \), \(d'(a_0) \in p R \) which means that \(f'(\pi)f'(\pi) \in \pi R_p \). Thus the extension \(d \), of \(d' \), to \(R_p \) is in \(\mathcal{D}(R_p) \) and induces \(\delta \) since \(d' \) does.

Lemma 5. Let \(D \in \mathcal{H}_c(R, R_e) \) where \(R_p = R[\pi] \) and \(f(x) = x^p + \sum_{\bar{a} \neq 0} p a_\bar{a} x^\bar{a} \) is the minimum function of \(\pi \) over \(R \). Let \(q > 2, n \geq 1 \), and \(m > p(n-1) \) be integers such that, using the same symbol for the extension of \(D \) to \(R_p \),

\[(9, 1) \quad D_j(\pi) \in \pi^2 R_p \quad \text{if} \quad j < n,
\]

\[(9, 2) \quad D_j(\pi) \in \pi^q R_p \quad \text{if} \quad n \leq j < m,
\]

and, if \(j \geq n \)

\[(9, 3) \quad D_j(a_n) \in f'(\pi)\pi^{q-p}.\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
If \(q = 3 \) then (9, 3) is assumed to hold only for \(j \geq m \). Under these assumptions \(\sum_{j=n} D_j(\pi) \) converges and
\[
\sum_{j=n} D_j(\pi) \in \pi^q R_p.
\]

The proof of this lemma consists of checking the valuation \(v \) of the terms on the right side of (8). We show first that if \(j \geq m \),
\[
D_j(\pi) \in \pi^q R_p.
\]
Thus assuming (10) true for \(j < r \) where \(r \geq m \) we consider (8, r). By (9, 3) \(f^0(\pi) \) is in \(f'(\pi)\pi^q R_p \). The term \(D_n(\pi) \cdots D_p(\pi) \) of \(A_r = \sum_{i\neq j, j \neq r} D_i, \ldots, \pi \) is in \(\pi^q R_p \) in view of the fact that at least one \(i \) and another is different from zero.

The above term appears in \(A_r \) a multiple of \(p \) times unless \(i_1 = i_2 = \cdots = i_p = r/p \) in which case it is in \(\pi^q R_p \). Since \(v(f'(\pi)) \leq 2p-1 \) and \(p \neq 2 \). Thus \(A_r \in f'(\pi)\pi^q R_p \). A similar argument shows \(B_r \), the remaining term on the right side of (8, r), to be in \(f'(\pi)\pi^q R_p \). Thus by (8, r) \(D_i(\pi) \in \pi^q R_p \).

Given \(i \geq 0 \), we assume for some integer \(s \geq m \) that if \(j > s \), then \(D_j(\pi) \in \pi^{i+1} R_p \) and, for \(h = 0, \ldots, p-1 \)
\[
D_j(a_h) \in f'(\pi)\pi^{i+1} R_p.
\]
Let \(s' = ps \) and let \(j > s' \). Then \(f^0(\pi) \in f'(\pi)\pi^{i+1} R_p \) and, by an analysis like that above, \(A_j \) and \(B_j \) are seen to be in \(f'(\pi)\pi^{i+1} R_p \). Thus \(D_j(\pi) \in \pi^{i+1} R_p \). Since \(D \) converges on \(R \), given \(i \geq 0 \), there is an \(s \) such that (11) holds for \(j > s \). It follows that \(\sum_{j=n} D_j(\pi) \) converges, and in view of (10) \(\sum_{j=n} D_j(\pi) \in \pi^q R_p \).

Lemma 6. If \(\alpha \in S_t \), \(i \geq 1 \), then there is a \(D \in H(R_p, R_p) \) such that \(\alpha^{-1} a_0 \in G_{i+1} \). Moreover, \(S_t/\theta_{t+1} \) is isomorphic to the subgroup of those \(\delta \) in \(\mathcal{D}(k) \) for which \(\delta(\bar{u}) = 0 \) with the following exception. If \(\bar{u} \in k^p \) and, for suitable choice of \(\pi \) we have \(\pi^p = p(1 + \pi^u) \) then \(S_t/\theta_{t+1} \) is isomorphic to the subgroup of those \(\delta \) in \(\mathcal{D}(k) \) for which \(\delta(\bar{v}) = 0 \).

Proof. By Lemma 2, it will be sufficient to find \(D \in H(R_p, R_p) \) such that \(\phi(\sigma_D) \) (see (5)) is a given \(\delta \) for which \(\delta(\bar{u}) = 0 \), or, in the exceptional case, \(\delta(\bar{v}) = 0 \). Let (6) be the minimum function of \(\pi \) over \(R \).

1. Let \(\delta \) be any derivation on \(k \) for which \(\delta(\bar{u}) = \delta(\bar{a}_0) = 0 \) and let \(H = \{H_j\} \) be any higher derivation in \(H(R, R) \) satisfying the two conditions (a) \(H_1 \) induces \(\delta \), (b) \(H_j(a_0) \in p R_j, j = 1, \ldots, p-1 \). Specifically, every derivation on \(k \) lifts to \(R \) [1, Theorem 1] which fact makes \(H_1 \) available. Let \(H_j = H_j(j) \) for \(j = 2, \ldots, p-1 \). By Theorem A, maps \(H_j, j \geq p \), can be defined so that \(H = \{H_j\} \in H(R, R) \). Let \(D = \{D_j\} \) where
\[
D_j = \pi^j H_j.
\]

Clearly, \(D \in H(R, R) \). We now show that
\[
D_j(\pi) \in \pi^{j+1} R_p, \quad j \geq 1,
\]
and
\[
\sum D_j(\pi) \text{ converges,}
\]
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
from which, with (12), it will follow that, using the same symbol for the extended higher derivation, \(D \in \mathcal{H}(R_p, R) \), \(a_0 \in \mathfrak{S}_1 \) and \(\Phi_1(a_0) = \delta \).

Let \(v(f'(\pi)) = p + r - 1 \). Thus \(r \) is the least positive integer such that \(a_i \) is a unit.

Looking to the conditions of Lemma 5 we note that \(f'(\pi)^{n+1-p-s}R_p = \pi^{n+1-r-s}R_p \). If \(s \geq r \), \(D_j(a_j) = \pi^{n+1-r-s}R_p \) for \(j \geq 1 \). If \(r > s > 0 \), \(a_i \in pR \); hence, \(H_i(a_i) \in pR \) and thus \(D_j(a_j) \in \pi^{n+1-r-s}R_p \) for \(j \geq 1 \). Finally, \(D_j(a_0) = \pi^{n+1}H_i(a_0) \). If \(j < p \), \(H_i(a_0) \in pR \) and \(\pi^{n+1}H_i(a_0) \in \pi^{n+1}R_p \). If \(j \geq p, \) \(i \geq l + r \). Hence, \(D_j(a_0) \in \pi^{n+1}R_p \) for \(j \geq 1 \). Thus conditions (9, 1) to (9, 3) are satisfied with \(q = i + 1 \) and \(n = m = 1 \). Hence (13) and (14) hold.

Case 2. \(v(f'(\pi)) < 2p - 2, i = 1 \). We define \(D \) as in Case 1 and note by inspection of (8, j) for \(j = 1, \ldots, p \) that \(D_j(\pi) = \pi^{n+1}R_p \), \(D_j(\pi) \in \pi^{n+1}R_p \) for \(j = 2, \ldots, p \). Also, in this case, \(f'(\pi)^{n+1-p-s}R_p = \pi^{n+1}R_p \). By (12) \(D_j(a_i) \in \pi^{n+1}R_p \) for \(j \geq p \) and \(s = 0, \ldots, p - 1 \). Thus conditions (9, 1) to (9, 3) are satisfied for \(n = 2, m = p + 1 \) and \(q = 3 \). Hence \(\sum D_j(\pi) \) converges and is in \(\pi^2R_p \). Thus, \(a_0 \in \mathfrak{S}_1 \) and \(\Phi_1(a_0) = \delta \).

Case 3. \(v(f'(\pi)) = 2p - 2, i = 1 \). We consider a number of subcases. In each case \(D \) is constructed by the method of Theorem A.

(3, i). \(\tilde{a}_{p-1} \notin k^p, \tilde{a}_0 \notin k^p, \tilde{a}_{p-1} \) and \(\tilde{a}_0 \) \(p \)-independent. As before, we initiate the construction of \(D \in \mathcal{H}_1(R, R_p) \) by letting \(D_j = \pi^jH_i, j = 1, \ldots, p - 1 \), where \(\{H_i\}_{t=1}^{t-1} \) are chosen such that \(H_i(\tilde{a}) = 0 \) and \(H_i(a_0) \in pR \). Let \(\mathfrak{S} \) be a set of representatives in \(R \) of a \(p \)-basis \(\mathcal{F} \) of \(k \). We may assume both \(a_0 \) and \(a_{p-1} \) in \(\mathfrak{S} \). By inspection of (8, 1) to (8, \(p - 1 \)), we have \(D_1(\pi) \in \pi^2R_p \) and \(D_j(\pi) \in \pi^3R_p, j = 2, \ldots, p - 1 \).

Considering (8, \(p \)), each summand of \(A_p \) and \(B_p \) is in \(p^2R_p \). Thus, \([D_1(\pi)]^p \) which is in \(p^2R_p \) but not in \(p^2+1R_p \). Thus, we define \(D_p \) by \(D_p(\pi) = 0 \) and \(D_p(a_0) \) is so chosen that \(f'(\pi)^{n+1-p-s}R_p = \pi^{n+1}R_p \). Thus, \(D_p(\pi) \in \pi^2R_p \). Also, \(H_i(a_0) \in \pi^2R_p \) for \(j > p \) we let \(D_j(\pi) = 0 \) for \(s \leq p \). By Lemma 1 \(D_j(\pi) \in \pi^p+1R_p \) for \(j > p \). It follows that conditions (9) of Lemma 5 are fulfilled for \(n = 2, m = p + 1 \) and \(q = 3 \). Thus by Theorem A the extension of \(D \) to \(R_p \) converges uniformly \(a_0 \in \mathfrak{S}_1 \) and \(\Phi_1(a_0) = \delta \).

(3, iii) \(\tilde{a}_{p-1} \notin k^p, \tilde{a}_0 \notin k^p, \tilde{a}_{p-1} \) and \(\tilde{a}_0 \) \(p \)-dependent. Let \(H_1 \in \mathcal{D}(R) \) induce \(\delta \in \mathcal{D}_k \) such that \(\delta(\tilde{a}_0) = 0 \) (Lemma 4) and let \(\mathfrak{S} \) be a set of representatives of a \(p \)-basis for \(k \). Let \(H_j = \pi^jH_i, j = 1, \ldots, p - 1 \), where \(\{H_j\}_{j=1}^{p-1} \) are chosen such that \(H_j(\tilde{a}_0) = 0 \) and \(H_j(a_0) \in pR \). Let \(\mathfrak{S} \) be a set of representatives of a \(p \)-basis for \(k \) which contains \(a_0 \).

Thus, \(D_j(\tilde{a}_0) \) and \(D_j(\tilde{a}_{p-1}) \) are \(p \)-dependent. Thus by (8, 1) \(D_j(\pi) \in \pi^2R_p \). Also, \(\pi^2R_p \) for \(j \geq 1, s = 0, \ldots, p - 1 \). Thus, conditions (9) of Lemma 5 are satisfied for \(n = 2, m = 2, q = 3 \) and again \(D \in \mathcal{H}(R_p, R), a_0 \in \mathfrak{S}_1 \) and \(\Phi_1(a_0) = \delta \).

(3, iv) \(\tilde{a}_{p-1} \notin k^p, \tilde{a}_0 \notin k^p \). A higher derivation \(D \) in \(\mathcal{H}_1(R, R_p) \) is chosen as in (3, ii). Since \(\tilde{a}_{p-1} = b_{p-1} + pc, H_1(\tilde{a}_{p-1}) \in pR_p \). Thus \(D_j(\pi) \in \pi^2R_p \) and for the rest the argument of (3, ii) applies.
representatives of a p-basis for k. We can assume a_{p-1} in \mathcal{S}. Let H_1 in $\mathcal{D}(R)$ induce δ in $\mathcal{D}(k)$. For $j=2, \ldots, p-1$ and $s \in \mathcal{S}$ we let $H_j(s)=0$. For $j=1, \ldots, p-1$ let $D_j=\pi^jH_j$. By (8, 1), $D_j(\pi) \in \pi^3R_p$ ($D_j(\pi) \in \pi^3R_p$ unless $D_1(a_{p-1}) \notin \pi^3R_p$). Also, $D_j(\pi) \in \pi^3R_p$ for $j=2, \ldots, p-1$. The terms A_p+B_p of (8, p) have $[D_1(\pi)]^p$ as the unique summand of minimum valuation, if $D_1(\pi) \notin \pi^3R_p$. In any case, D_1 is defined by $D_1(s)=0$ for $s \in \mathcal{S}$, $s \neq a_{p-1}$ and $D_1(a_{p-1}) \in \pi^3R_p$ is chosen so that $D_1(\pi)$ is in π^3R_p. Finally $D_j(s)=0$ for $s \in \mathcal{S}$ and $j>p$. Again by Theorem A these conditions determine D in $\mathcal{H}_1(R_p, R_p)$. By Lemma 1 $D_j(R) \subseteq \pi^3R_p$ for $j>p$. Again we invoke Lemma 5 with $n=2$, $m=p+1$ and $q=3$ to show that $D \in \mathcal{H}_1(R_p, R_p)$, $a_0 \in \mathfrak{S}_1$ and $\Phi_1(\alpha_0)=\delta$.

Case 4. $v(f'(\alpha))=2p-1$, $\alpha_0 \notin k^p$, $i>1$. Let $H \in \mathcal{H}(R, R)$ be chosen so that $H_j(\alpha_0) \in pR_p$ for $j=1, \ldots, p-1$ and H_1 induces a given $\delta \in \mathcal{D}(k)$ for which $\delta(\alpha_0)=0$. Let $D=\{\pi^jH_j\}$. Since by (8, 1) $D_j(\pi) \in \pi^3R_p$ and, by inspection, $D_j(\alpha_0) \in \pi^3R_p$, $s=0, \ldots, p-1$, $j \geq 1$, we see by Lemma 5 that $\sum D_j(\pi) \in \pi^3R_p$. Thus $a_0 \in \mathfrak{S}_1$ and $\Phi_1(\alpha_0)=\delta$. Clearly, $D \in \mathcal{H}_1(R_p, R_p)$.

Case 5. $v(f'(\pi))=2p-1$, $\alpha_0 \notin k^p$, $i>1$. We can assume that $a_0=1+p\beta_0$. Let $H \in \mathcal{H}(R, R)$ be such that H_1 induces a given $\delta \in \mathcal{D}(k)$. Let $D=\{\pi^jH_j\}$ and argue as above.

Case 6. $v(f'(\pi))=2p-1$, $\alpha_0 \notin k^p$, $i=1$. Let $\delta \in \mathcal{D}(k)$, $\delta(\alpha_0)=0$, and let H_1 in $\mathcal{D}(R)$ induce δ. Let \mathcal{S} be a set of representatives in R of a p-basis for k with a_0 in \mathcal{S}. We define $K_1 \in \mathcal{D}(R)$ as follows: $K_1(a_0)=\pi^p(\alpha_0)$ and $K_1(s)=0$ for $s \in \mathcal{S}$, $s \neq a_0$. By Theorem A, these conditions determine a derivation on R. The derivation $D_1=\pi H_1-\pi^p K_1$ has the property $D_1(a_0)=0$ and is the first map of $D \in \mathcal{H}_1(R_p, R_p)$. For the rest, we define $D_j(s)=0$ for $s \in \mathcal{S}$ and $j>1$. By Theorem A, $D \in \mathcal{H}_1(R_p, R_p)$. By Lemma 1 $D_1(R) \subseteq \pi R_p$ and $D_j(R) \subseteq \pi^3R_p$ for $j \geq 1$. The conditions of Lemma 5 are fulfilled for $n=1$, $m=1$ and $q=3$. Moreover, $\Phi_1(\alpha_0)=\delta$.

Case 7. $v(f'(\pi))=2p-1$, $\alpha_0 \notin k^p$, $i=1$. Again, π is chosen so that $a_0=1+p\beta_0$. We have the situation (3) with $t=p$ and $b=\beta_0$. Thus, in deference to Lemma 2, we choose $\delta \in \mathcal{D}(k)$ so that $\delta(\beta_0)=0$ and let $H_1 \in \mathcal{D}(R)$ induce δ. Let $H \in \mathcal{H}(R, R)$ be any higher derivation on R with the given H_1 as the first map. Let $D=\{D_j\}$ where $D_j=\pi H_j$, $j \geq 1$. Let $n=m=1, q=3$ in Lemma 5 and we conclude that $\sum D_j(\pi) \in \pi^3R_p$. Again we have the desired conclusion and Lemma 6 is proved.

The next series of lemmas are concerned with automorphisms in the “gap” between \mathfrak{S}_i and \mathfrak{S}_i.

Lemma 7. If π is a prime element of R_p and $\pi^p=-\alpha \in k^p$, then, given $i \geq 2$, there is a $D \in \mathcal{H}_i(R_p, R_p)$ such that $a_0 \in \mathfrak{S}_i$ and $a_0(\pi)=\pi^i + \alpha$ where α is any given element of k. Hence $\mathfrak{S}_i/\mathfrak{S}_{i-1}$ is isomorphic to k^*.

Proof. We assume (6) to be the minimum function of π over R and thus $\alpha \notin k^p$.

Let \mathcal{S} be a set of representatives in R of a p-basis for k with $a_0 \in \mathcal{S}$. With a chosen arbitrarily in R_p we define a derivation D_1 mapping R into R_p by $D_1(a_0) = -p^{-1}f'(\pi)a$ and $D_1(s) = 0$ for $s \in \mathcal{S}, s \neq a_0$. Then $D_1(R) \subset f'(\pi)\pi^{t-p}R_p$ by Lemma 1 and by (8.1), $D_1(\pi) \equiv \pi a$, mod $\pi^{t+1}R_p$. Let $D_j(s) = 0, s \in \mathcal{S}, j = 2, \ldots, p-1$. If $i=2$, the term $[D_i(\pi)]^p$ in A_p of (8, p) makes it necessary to consider cases.

Case 1. $i > 2$ or $v(f'(\pi)) < 2p - 2$. In this case we let $D_j(s) = 0, s \in \mathcal{S}, j > p-1$. Thus, by Lemma 1, $D_j(R) \subset f'(\pi)\pi^{t-p}R_p, j \geq 1$, and if $j > 1$, $D_j(R) \subset f'(\pi)\pi^{t-p}$ since $f'(\pi) \in \pi^pR_p$. The conditions of Lemma 5 are fulfilled for $n=2, m=p+1$ and $q=1+i+1$. Thus D extends to R_p, is uniformly convergent on R_p and $\sum_{j=1}^p D_j(\pi) \in \pi^{t+1}R_p$. In particular then, $\sum_{j=1}^p D_j(\pi) \equiv \pi a$, mod $\pi^{t+1}R_p$.

Case 2. $i = 2, v(f'(\pi)) = 2p - 2$. In this case we choose $D_p(s) = 0, s \in \mathcal{S}, s \neq a_0$ and $D_p(a_0) \in \pi^pR_p$ so that $D_p(\pi)$ will be in π^3R_p. Again, we let $D_j(s) = 0$ for $j > p$, $s \in \mathcal{S}$ and apply Lemma 5 with $n=2, m=p+1$ and $q=3$, obtaining the same conclusion as in Case 1.

The map $\tau_i: \mathcal{S}_i \to k^+$ given by $\tau_i(\alpha) = \bar{\alpha}$ where $\alpha(\pi) = \pi + \pi a$, is a homomorphism with kernel \mathcal{K}_i and evidently maps onto k^+ if $i \geq 2$.

Lemma 8. If π is a prime element of R_p, $\pi^p = -pu$, and $\bar{u} \in k^p$ then $\mathcal{S}_i = \mathcal{S}_i$ for $i > 1$ unless $i = 2$ and of (3) is $p-1$. If $t = p-1$ the following are equivalent.

(a) \bar{u} has a $(p-1)$th root in k.

(b) R_p is Galois over R.

(c) $\mathcal{S}_2 \neq \mathcal{S}_2$.

(d) $\mathcal{S}_2/\mathcal{S}_2$ is the group of order p.

Proof. Let α be in \mathcal{S}_i. Then $\alpha = e + \pi^i \alpha^*$. The relation

$$[\alpha(\pi)]^p - \pi^p = p[1 + [\alpha(\pi)]'a(v)] - p(1 + \pi^i v)$$

becomes

$$\pi^{t+p-1}\alpha^*(\pi) + \cdots + \pi^{ip}[\alpha^*(\pi)]^p$$

(15)

If $i > 2$ the unique term having minimal valuation on the left side of (15) is $\pi^{t+p-1}\alpha^*(\pi)$. If $p \parallel t$ the unique term of minimal valuation on the right is $pt\pi^{t-1+i}\alpha^*(\pi)$, unless $\alpha^*(\pi)$ is in πR_p. Thus, either $\alpha^*(\pi) = \pi R_p$ or $t+i-1 = p+i-1$, which cannot be. Thus, if $i > 2$ and $p \parallel t$, then $\alpha \in \mathcal{S}_i$ or $\mathcal{S}_i = \mathcal{S}_i$. If $p \parallel t$ and $i \geq 2$ the left side of (15) has valuation less than the right side unless $\alpha^*(\pi) \in \pi R_p$. Thus again $\mathcal{S}_i = \mathcal{S}_i$.

If $i=2$ and $p \parallel t$, the unique term of minimal valuation on the left side of (15) is $\pi^{2p}[\alpha^*(\pi)]^p$, assuming $\alpha^*(\pi)$ to be a unit. The corresponding term on the right is $pt\pi^{t-1+i}\alpha^*(\pi)v$. Thus, $2\pi = p+t+1$ or $t = p-1$. So, if $t \neq p-1$, then by (15), $\pi^{2p}[\alpha^*(\pi)]^p \equiv (p-1)\pi^p \alpha^*(\pi)v$, mod $\pi^{2p+1}R_p$, or, using (3), $[\alpha^*(\pi)]^{-1} \equiv (p-1)v$, mod πR_p. Thus, $(p-1)v$, or \bar{v}, is a $(p-1)$th root in k and the residue
of \(\alpha^* (\pi) \) is a \((p-1)\)th root of \((p-1)\pi \). We have shown that \((c) \rightarrow (d) \rightarrow (a)\). A theorem of Wishart [4, Theorem 4.15] asserts that \((a) \rightarrow (b)\).

Suppose, finally, that \(\alpha \) in \(\mathfrak{G}_1 \) leaves \(R \) element-wise fixed. Then, if \(\alpha (\pi) = \pi + \pi^rb, \alpha \in \mathfrak{G}_1 \). Thus, if \(\alpha \neq e \), then \(\alpha \in \mathfrak{G}_1, \alpha \notin \mathfrak{S}_2 \) for some \(r > 1 \). Evidently, \(r = 2 \) and \((b) \rightarrow (c)\). This fact was also observed by Wishart [4, Corollary 4.16] who noted that if \(\bar{u} \in k^p \) then \(R_p \) is Galois over \(R \) if and only if \(\mathfrak{G}_2 \neq \mathfrak{S}_2 \). It follows from Lemma 7 that if \(\bar{u} \notin k^p \), then \(\mathfrak{G}_2 \) can be different from \(\mathfrak{S}_2 \) without \(R_p \) being Galois over \(R \).

Lemma 9. If \(\mathfrak{G}_2 \neq \mathfrak{S}_2 \), then, for each \(\alpha \in \mathfrak{G}_2 \), there is a \(D \) in \(\mathcal{H}_u (R_p, R_p) \) such that \(aD^{-1} \in \mathfrak{G}_2 \) if and only if, in \((3)\), \(\bar{v} \notin k^p \).

Proof. Assuming first that \(\bar{v} \notin k^p \) it follows from Lemma 8 that in \((3)\), \(t = p - 1 \) and \(\bar{v} \) is a \((p-1)\)th root in \(k \). Assuming \((6)\) to be the minimal polynomial of \(\pi \) over \(R \), relation \((3)\) with \(t = p - 1 \) implies that \(a_1, \ldots, a_{p-2} \) are in \(pR, \bar{a}_{p-1} (-\bar{v}) \) is a \((p-1)\)th root in \(k \), \(v(f'(\pi)) = 2p - 2 \) and \(a_0 = 1 + pb_0 \).

Let \(w \) be a unit in \(R_p \) such that \(\bar{w} \) is a \((p-1)\)th root of \(\bar{a}_{p-1} (-\bar{v}) \). We wish to construct \(D \in \mathcal{H}_u (R_p, R_p) \) such that \(aD \in \mathfrak{G}_2 \) and \(aD(\pi) = \pi^2w, \mod \pi^3R_p \).

Let \(\mathcal{S} \) be a set of representatives in \(R \) for a \(p \)-basis of \(k \) chosen to include \(a_{p-1} \). Then \(D_1 \) is defined by \(D_1(a_{p-1}) = -f'(\pi)\pi^2w/pn^{p-1}, D_1(s) = 0 \) for \(s \in \mathcal{S}, s \neq a_{p-1} \). By Lemma 1 \(D_1(R) \subseteq \pi^3R_p \) and by \((8.1)\) \(D_1(\pi) = \pi^2w, \mod \pi^3R_p \). For \(j = 2, \ldots, p - 1 \) and \(s \in \mathcal{S} \), \(D_1(s) = 0 \). By \((8, 2)\) to \((8, p - 1)\), \(D_1(\pi) = \pi^{p-1}R_p \). The term \([D_1(\pi)]^p \) in \((8, p)\) leads us to define \(D_p \) by \(D_p(a_{p-1}) = -\pi^{p+1}w/pn^{p-1} \) and \(D_p(s) = 0, s \notin \mathcal{S}, s \neq a_{p-1} \). Since each term of \((8, p)\) in \(A_p + B_p \) is in \(\pi^{p+1}R_p \), save \([D_1(\pi)]^p \) and \([D_1(\pi)]^p \equiv \pi^2w, \mod \pi^{p+1}R_p \), we have \(D_p(\pi) = \pi^3R_p \). Finally, we let \(D_1(s) = 0 \) for \(s \in \mathcal{S} \) and \(j > p \). Then \(D_1(R) \subseteq \pi^3R_p \) for \(j > p \) and by Lemma 5 with \(n = 2, m = p + 1 \) and \(q = 3 \), we conclude that \(\sum D_1(\pi) \) converges and \(\sum_{j=2}^{p-3} D_1(\pi) = 0 \), \(D_j(\pi) = 0 \), \(j = 2, \ldots, p-1 \). By \((8, 2)\) \(D_1(\pi) = 0 \) for \(j > p \) and \(D_1(R) \subseteq \pi^3R_p \). Thus, \(\alpha_D \) is in \(\mathfrak{G}_2 \). We have shown that \(\alpha_D(\pi) = \pi^2R_p \) and it is shown below that

\[(16) \quad \alpha_D(s) - s = \pi^2R_p, \quad s \in \mathcal{S}.\]

If \(s \notin \mathcal{S}, s \neq a_{p-1} \) then \(\alpha_D(s) = s \) by definition of \(D \). Since \(D_1(a_{p-1}) = 0 \) for \(j > 1 \), \(p \) it is sufficient to show that \(D_1(a_{p-1}) + D_p(a_{p-1}) = \pi^3R_p \). Now, \(f'(\pi) = (p-1)a_{p-1} \pi^{p-2}, \mod \pi^{p-1}R_p \). Also \(\pi^{p-1} R_p = (p-1)a_{p-1}, \mod \pi^{p-1}R_p \). Using these facts as well as the congruence \(\pi^p \equiv -p, \mod \pi^{p+1}R_p \), leads to the conclusion \(D_1(a_{p-1}) + D_p(a_{p-1}) = -f'(\pi)\pi^2w/pn^{p-1} - \pi^2w/pn^{p-1} = \pi^3R_p \).

Since \(\alpha_D \) is inertial, \(\alpha_D(\pi^p) = \pi^pR \) and every unit in \(R \) is, mod \(pR \), a polynomial in elements of \(\mathcal{S} \) with coefficients in \(R_p \). It follows that \(\alpha_D(a) - a = \pi^3R_p \) for \(a \) in \(R \). Thus \(\alpha \) is in \(\mathfrak{G}_2 \).

It was shown in the proof of Lemma 8 that if \(\alpha \in \mathfrak{G}_2 \) then \(\alpha = \epsilon + \pi^2a^* \) and \(a \neq \mathfrak{S}_2 \) or the residue of \(\pi^* (\pi) \) is a \((p-1)\)th root of \((p-1)\pi = \bar{a}_{p-1} (-\bar{v}) \). Thus if we choose \(w \), in the construction of \(D \), to be \(\pi^* (\pi) \), then \(\alpha_D^{-1} \in \mathfrak{G}_2 \).

If \(\bar{u} \in k^p \) then \(\bar{v} = \bar{v}_0^p + \bar{v}_1 \). Thus \(\bar{a}_{p-1} = \bar{v}_0^p + \bar{b}_0 = \bar{v}_1 \). Since, again, \(a_0 = 1 + pb_0 \), we choose \(c_0 \) and \(c_1 \) in \(R \) so that \(a_{p-1} = c_0^p + pc_1 \). Let \(D \in \mathcal{H}_u (R_p, R_p) \) be such that...
There is, then, a first index \(j \) such that \(f^{D_j}(\pi) \notin f'((\pi)\pi^j R_p) \) and \(f^{D_j}(\pi) \notin f'(\pi)\pi^{j+1} R_p \). This requires that \(D_j(c_p + pc_1) \notin \pi \pi^{j+1} R_p \) and \(D_j(c_p + pc_1) \notin \pi^{j+1} R_p \). However, \(D_j(R) \subset \pi R_p \) and hence \(D_j(c_p + pc_1) \notin \pi^{j+1} R_p \). We have a contradiction. Thus \(\Theta_2 \cap \Theta_D \subset \Theta_2 \), and Lemma 9 is proved.

For \(i > 1 \) and \(\alpha \in \Theta_i \) there is a \(D \in \mathcal{H}_\alpha(R_p, R_p) \) such that \(D(R_p) \subset \pi^i R_p \) (see (12)) and \(\alpha \alpha_D \in \Theta_{i+1} \). Also if \(i > 2 \) and \(\alpha \in \Theta_i \) then \(\alpha \in \Theta_i \) or there is a \(D \in \mathcal{H}_\alpha(R_p, R_p) \) such that \(D(R_p) \subset \pi^i R_p \) and \(\alpha \alpha_D \in \Theta_i \). This follows from Lemma 7, Case 1 of the proof of Lemma 7 and Lemma 8. Thus, given \(\alpha \in \Theta_2 \) there is a sequence \(\{D^{(n)}\} \), \(D^{(n)} \in \mathcal{H}_\alpha(R_p, R_p) \) such that \(D^{(n)}(R_p) \subset \pi^n R_p \) where \(\lim_n s_n = \infty \), and \(\alpha = \alpha_{D_1} \alpha_{D_2} \cdots \alpha_{D_{2n}} \mod \Theta_{n+2} \). By Lemma 3, there is a \(D \in \mathcal{H}_\alpha(R_p, R_p) \) such that \(\alpha = \alpha_D \).

By Lemma 6 and Lemma 9, we conclude that \(\Theta_2 \) and \(\Theta(R_p, R) \) together generate \(\Theta \). If \(\beta \) is an automorphism on \(R \) and \(D \in \mathcal{H}_\beta(R, R) \) then \(H = \{H_i\} \) where \(H_i = \beta^{-1} D_i \beta \) is also in \(\mathcal{H}_\beta(R, R) \). If \(D \) converges uniformly so does \(H \). Thus \(\Theta_D \) is an invariant subgroup of \(G \) the automorphism group of \(R_p \). Hence \(\Theta_1 = \Theta_2 \cdot \Theta(R_p, R) \). These observations along with Lemmas 8 and 9 prove Theorem 1. Theorem 2 follows directly from Lemmas 2, 4, 6, 7 and 8.

REFERENCES

2. ———, *Convergent higher derivations on local rings*, Trans Amer. Math. Soc. **132** (1968), 31-44.

Florida State University, Tallahassee, Florida