SPACES FOR WHICH THE STONE-WEIERSTRASS THEOREM HOLDS

BY

R. M. STEPHENSON, JR.

If \(X \) is a topological space, a subset \(A \) of \(C(X) \), the set of bounded continuous real functions on \(X \), is said to separate the points of \(X \) if for every pair \(x, y \) of distinct points of \(X \) there is a function \(f \) in \(A \) with \(f(x) \neq f(y) \). A space \(X \) is called completely Hausdorff if \(C(X) \) separates the points of \(X \). The Stone-Weierstrass theorem states: If \(X \) is a compact Hausdorff space, and if \(A \) is a subalgebra of \(C(X) \) which (i) separates the points of \(X \) and (ii) contains the constants, then \(A \) is uniformly dense in \(C(X) \). In the following, we shall say the Stone-Weierstrass theorem holds for a space \(X \) provided that \(X \) is completely Hausdorff, and that every subalgebra of \(C(X) \) which satisfies (i) and (ii) is uniformly dense in \(C(X) \).

An extension space of a topological space \(X \) is a pair \((Y, h)\), where \(Y \) is a topological space, \(h \) is a homeomorphism of \(X \) into \(Y \), and \(h(X) \) is dense in \(Y \); if \(h \) is the identity map, the reference to \(h \) is omitted, and \(Y \) itself is called an extension space of \(X \); \((Y, h)\) is called proper if \(h(X) \) is a proper subset of \(Y \). We shall call a completely Hausdorff space \(X \) completely Hausdorff-complete if and only if \(X \) has no proper extension space \((Y, h)\) such that \(Y \) is a completely Hausdorff space.

A filter on a space \(X \) is called completely regular provided that it has a base \(\mathscr{B} \) of open sets such that for each \(B \) in \(\mathscr{B} \), there is a set \(B' \subseteq B \) in \(\mathscr{B} \) and a function \(f \in C(X) \) which maps \(X \) into \([0, 1] \), is 0 on \(B' \), and is 1 on \(X - B \). In [3] Banaschewski proved that the Stone-Weierstrass theorem holds for a completely Hausdorff space \(X \) if and only if every completely regular filter \(\mathscr{F} \) on \(X \) has the property that \(\bigcap \{ F \mid F \in \mathscr{F} \} \neq \emptyset \). Using this result, we shall prove the following:

Theorem 1. The Stone-Weierstrass theorem holds for a completely Hausdorff space \(X \) if and only if \(X \) is completely Hausdorff-complete.

Proof. Suppose that \(X \) has a proper extension space \((Y, h)\) such that \(Y \) is a completely Hausdorff space. Fix a point \(y \) in \(Y - h(X) \), and let \(Z = \{ f \in C(h(X)) \mid f = g \mid h(X) \} \), where \(g \) is in \(C(Y) \), and \(g(y) = 0 \). For each \(f \in Z \) and number \(0 < t \), define \(W(f, t) = \{ z \mid -t < f(z) < t \} \), and let \(\mathscr{F} \) be the filter on \(h(X) \) generated by the collection of all finite intersections of elements of \(\{ W(f, t) \mid f \in Z, 0 < t \} \). It is not difficult to see that \(\mathscr{F} \) is a completely regular filter on \(h(X) \): take \(\bigcap \{ W(f, t_i) \mid i = 1, \ldots, n \} \in \mathscr{F} \); for each integer \(i \), \(1 \leq i \leq n \), choose a number

Received by the editors October 17, 1966.

(1) This is part of a doctoral dissertation done under the supervision of Professor M. P. Berri.

(2) For definitions not given here, see [8] or [13].
Let $g \in C(X)$. Since $[g(X)]^-$ is compact, there is a number t in the adherence of the filter base $g(\mathcal{F})$. Since \mathcal{F} is a maximal completely regular filter, the inverse image under g of each neighborhood of t is an element of \mathcal{F}, i.e., $g(\mathcal{F})$ converges to t. Thus the function g' defined by $g' = g$ on X, and $g'(\mathcal{F}) = \lim g(\mathcal{F})$ is an extension of g in $C(Y)$.

It would be interesting to know when the Stone-Weierstrass theorem holds for the product of a collection of topological spaces. As far as the author knows, the following problem is unsolved: If $\{X_a \mid a \in A\}$ is a collection of topological spaces such that the Stone-Weierstrass theorem holds for each $X_a, a \in A$, does the Stone-Weierstrass theorem hold for $\prod \{X_a \mid a \in A\}$? The next theorem gives a partial answer to this question.

Theorem 2. If X_1 is a compact Hausdorff space, and if X_2 is a space for which the Stone-Weierstrass theorem holds, then the Stone-Weierstrass theorem holds for $X_1 \times X_2$. If $\{X_a \mid a \in A\}$ is a collection of spaces with the property that the Stone-Weierstrass theorem holds for their product $X = \prod \{X_a \mid a \in A\}$, then the Stone-Weierstrass theorem holds for each $X_a, a \in A$.

Proof. For the first part, assume X_1 and X_2 have the given properties. Let $x = (x_1, x_2)$ and $y = (y_1, y_2)$ be distinct points of $X_1 \times X_2$. Then $x_i \neq y_i$, $i = 1$, or $i = 2$, so there is a function f in $C(X_i)$ such that $f(x_i) \neq f(y_i)$. Hence $f \circ pr_i$ is in $C(X_1 \times X_2)$ and satisfies $f \circ pr_i(x) \neq f \circ pr_i(y)$. Suppose that \mathcal{G} is a completely regular filter on $X_1 \times X_2$. We shall show that $\mathcal{G} \neq \{C \mid C \in \mathcal{G}\}$. The filter generated by $pr_2(\mathcal{G})$ has a base consisting of open sets since pr_2 is an open mapping. Furthermore, it is completely regular, for take an open set $C \in pr_2(\mathcal{G})$, say $C = pr_2(B)$, where $B \in \mathcal{G}$. There exists a set $B' \subseteq B$ in \mathcal{G} and a function g in $C(X_1 \times X_2)$ which maps $X_1 \times X_2$ into $[0, 1]$, is 0 on B', and is 1 on $(X_1 \times X_2) - B$. For each number $t \in (0, 1)$, let U_t be
the open set \(pr_2(g^{-1}(0, t))) \). Then whenever \(0 < s < t < 1 \), we have \(pr_2(B') \subseteq U_s \subseteq U_t \subseteq U \), for since \(X_t \) is compact, \(pr_2 \) is a closed mapping. Define \(h : X_2 \rightarrow [0, 1] \) by \(h(x) = 0 \) if \(x \in U_t \) for all \(t \in (0, 1) \), and \(h(x) = \sup \{ t : x \notin U_t \} \) otherwise. If \(0 < a < 1 \), \(h^{-1}((0, a)) = \bigcup \{ U_t : |t| < a \} \) and \(h^{-1}((a, 1)) = \bigcup \{ X_t - U_t : |t| > a \} \) are open sets. Hence \(h \in C(X_2) \), \(h(pr_2(B')) = 0 \), and \(h(X_2 - C) = 1 \). By hypothesis the Stone-Weierstrass theorem holds for \(X_2 \); thus there is a point \(x \in \bigcap \{ pr_2(C) : C \in \mathcal{C} \} \).

Then \(\mathcal{D} = \{ C \cap (X_1 \times \{ x \}) : C \in \mathcal{C} \} \) is a filter base on \(X_1 \times X_2 \). \(pr_1 \{ \mathcal{D} \} \), a filter base on a compact space, has an adherent point \(y \). Therefore, for \(C \in \mathcal{C} \) and an arbitrary open set \(Y \subseteq X_1 \), \(y \in Y \) implies \(C \cap (X \times \{ x \}) = C \cap (X_1 \times \{ x \}) \cap (X_2 \times \{ x \}) \neq \emptyset \), i.e., \((y, x) \) is an adherent point of \(\mathcal{C} \). Since the adherence of a completely regular filter is the same as the intersection of all the sets belonging to it, \((y, x) \in \bigcap \{ C : C \in \mathcal{C} \} \).

For the second statement, we assume the Stone-Weierstrass theorem holds for \(X = \bigcap \{ X_a : a \in A \} \) and consider a factor space \(X_b \).

Let \(x_b \) and \(y_b \) be distinct points of \(X_b \). For each \(a \in A - \{ b \} \), fix \(z_a \in X_a \), and define \(x_a = y_a = z_a \). Set \(x = (x_a : a \in A) \) and \(y = (y_a : a \in A) \). \(x \neq y \), so there is a function \(f \in C(X) \) such that \(f(x) \neq f(y) \). Define \(Z_a = X_a, Z_0 = \{ z_0 \} \) if \(a \neq b \), and \(Z = \bigcap \{ Z_a : a \in A \} \). Set \(i = pr_0 | Z^{-1} \) and \(f' = f \circ i \). Then \(f' \in C(X_b) \), and \(f'(x_b) \neq f(y_b) \).

Let \(\mathcal{F} \) be a completely regular filter on \(X_b \), and consider the filter generated by \(pr_0^{-1} (\mathcal{F}) \). Take \(G = pr_0^{-1} (F) \), \(F \) a set in \(\mathcal{F} \). There is a function \(g \in C(X_b) \) and an open set \(F' \subseteq F \) in \(\mathcal{F} \) such that \(g(F') = 0 \), \(g(X_b - F) = 1 \), and \(g(X_b) \subseteq [0, 1] \). The open set \(G' = pr_0^{-1} (F') \subseteq G \) is in \(pr_0^{-1} (\mathcal{F}) \), and the function \(g \circ pr_0 \in C(X) \) satisfies \(g \circ pr_0 (G') = 0 \), \(g \circ pr_0 (X_b - G') = 1 \), and \(g \circ pr_0 (X_b) \subseteq [0, 1] \). Hence the filter generated by \(pr_0^{-1} (\mathcal{F}) \) is completely regular and has an adherent point \(x \). \(pr_0 (x) \in \bigcap \{ F : F \in \mathcal{F} \} \).

By similar reasoning one can prove:

Theorem 3. Let \(X \) be a space for which the Stone-Weierstrass theorem holds, and suppose that \(R \) is an equivalence relation on \(X \). Then the Stone-Weierstrass theorem holds for the quotient space \(X/R \) if and only if \(X/R \) is completely Hausdorff.

Although the Stone-Weierstrass theorem does not hold for every completely Hausdorff space, it can be shown that every completely Hausdorff space has an extension space for which it does hold.

Let \(X \) be a completely Hausdorff space, and let \(\mathcal{M} \) be the set of all maximal completely regular filters on \(X \) which have empty adherences. We shall denote by \(X' \) the topological space whose points are the elements of \(X \cup \mathcal{M} \) and whose open sets are generated by \(\{ V^* : V \text{ is open in } X \} \), where \(V^* = V \cup \{ \mathcal{F} \in \mathcal{M} : V \in \mathcal{F} \} \). We shall call \(X' \) the completely Hausdorff-completion of \(X \). In general, if \(T \) is an extension space of a topological space \(S \), the trace filters of \(T \) are the filters \(\mathcal{F}(t), t \in T - S \), where \(\mathcal{F}(t) \) is the filter on \(S \) generated by the traces \(U \cap S \) of the neighborhoods \(U \subseteq T \) of \(t \). In case \(S \) is completely Hausdorff and \(T = S' \), \(\mathcal{F}(\mathcal{F}) = \mathcal{F} \) if \(\mathcal{F} \in S' - S \), i.e., the trace filters of \(S' \) are the maximal completely regular filters \(\mathcal{F} \) on \(S \) such that \(\bigcap \{ G : G \in \mathcal{F} \} = \emptyset \).
If \(X \) and \(Z \) are topological spaces, we shall denote by \(C(X, Z) \) the set of all continuous mappings of \(X \) into \(Z \).

Suppose that \(Y \) is a completely Hausdorff space which is completely regular. Then \(Y' \) is the Stone-Čech compactification of \(Y \) (see [1]). It is well known that \(Y' \) has the following properties: if \(Z \) is a compact Hausdorff space, then each function in \(C(Y, Z) \) has a unique extension in \(C(Y', Z) \); \(Y' \) is locally connected if and only if \(Y \) is locally connected and pseudocompact [11]; \(Y' \) is connected if and only if \(Y \) is connected; \(C(Y) \) and \(C(Y') \) are isomorphic, and if \(R \) is the set of all real numbers, \(C(Y') \) and \(C(Y, R) \) are isomorphic only if \(Y \) is pseudocompact. The next theorem shows that almost all of these properties hold for \(Y' \) if \(Y \) is completely Hausdorff, but not necessarily completely regular.

Theorem 4. Let \(X \) be a completely Hausdorff space. The completely Hausdorff-completion \(X' \) of \(X \) has the following properties.

(i) If \(Z \) is a compact Hausdorff space, then each function in \(C(X, Z) \) has a unique extension in \(C(X', Z) \).

(ii) The Stone-Weierstrass theorem holds for \(X' \).

(iii) \(X' \) is locally connected if and only if \(X \) is locally connected and each trace filter has a base consisting of connected open sets.

(iv) \(X' \) is not locally connected unless \(X \) is locally connected and pseudocompact.

(v) \(X' \) is connected if and only if \(X \) is connected.

(vi) \(C(X') \) and \(C(X) \) are isomorphic, and if \(R \) is the set of all real numbers, \(C(X') \) and \(C(X, R) \) are isomorphic only if \(X \) is pseudocompact.

(vii) If \((Y, h)\) is an extension space of \(X \) such that \(Y \) is completely Hausdorff-complete, each element of \(C(h(X)) \) has an extension in \(C(Y) \), and each trace filter of \(Y \) is a completely regular filter on \(h(X) \), then there is a one-to-one function \(g \in C(Y, X') \) for which \(g(Y) = X' \) and \(g \circ h \) is the identity on \(X \).

Proof. (i) Let \(f \in C(X, Z) \). By almost the same argument as one given in the proof of Theorem 1, one can show that \(f(\mathcal{G}) \) is a convergent filter base if \(\mathcal{G} \) is a maximal completely regular filter on \(X \). Define \(f' \) by \(f'(x) = f(x) \) if \(x \in X \), and \(f'(\mathcal{H}) = \lim f(\mathcal{H}) \) if \(\mathcal{H} \in X' - X \). Take \(\mathcal{F} \in X' - X \), and choose open sets \(O \) and \(P \) such that \(f'(\mathcal{F}) \in O \subseteq \overline{O} \subseteq P \). As \(f'(\mathcal{F}) = \lim f(\mathcal{F}) \), there is a set \(V \subseteq \mathcal{F} \) open in \(X \) such that \(f(V) \subseteq O \). Necessarily the open neighborhood \(V^* \) of \(\mathcal{F} \) has the property that \(f'(V^*) \subseteq P \), for suppose there is a filter \(\mathcal{G} \in V^* \) such that \(\lim f(\mathcal{G}) \notin O \) : there exists an open set \(f'(\mathcal{G}) \) in \(W \), with \(O \cap W = \emptyset \); \(f'(\mathcal{G}) \) converges to \(f'(\mathcal{F}) \); also \(V \subseteq \mathcal{F} \) since \(\mathcal{G} \in V^* \); but then \(\emptyset = V \cap f^{-1}(W) \subseteq \mathcal{G} \), which is impossible. Therefore, \(f' \) is continuous at \(\mathcal{F} \). The proof that \(f' \) is continuous at an arbitrary point of \(X \) is similar. Thus \(f' \in C(X', Z) \). Clearly \(f'|X = f \). Since \(X \) is dense in \(X' \), and the space \(Z \) is Hausdorff, \(f' \) is unique.

(ii) Since \(X \) is completely Hausdorff, and since by (i) each function in \(C(X) \) has an extension in \(C(X') \), \(C(X') \) separates the points of \(X \). If \(x \in X \), and if \(\mathcal{F} \in X' - X \), then because \(\bigcap \{ F \mid F \in \mathcal{F} \} = \emptyset \), we can choose a function \(f \in C(X) \) such that
$f(x) = 1$, and $f(F) = 0$, some $F \in \mathcal{F}$; the extension f' of f in $C(X')$ has the property that $f'(x) = 1 \neq 0 = f'(\mathcal{F})$. $C(X')$ also separates the points of $X' - X$, for suppose that $\mathcal{G}, \mathcal{H} \in X' - X$, $\mathcal{G} \neq \mathcal{H}$: as \mathcal{I} and \mathcal{H} are distinct maximal completely regular filters on X, there exist sets $G \in \mathcal{I}$ and $H \in \mathcal{H}$ such that $G \cap H = \varnothing$; furthermore, G and H can be chosen so that there is a function $g \in C(X)$ such that $g(G) = 0$, and $g(H) = 1$; then the extension g' of g in $C(X')$ satisfies $g'(\mathcal{G}) = 0 \neq 1 = g'(\mathcal{H})$. Hence X' is completely Hausdorff.

Let F be a completely regular filter on X'. We wish to show that $\bigcap \{F \mid F \in \mathcal{F}\} \neq \varnothing$. If there is a point $x \in X$ such that $x \in \bigcap \{F \mid F \in \mathcal{F}\}$, we are done. Suppose that $\bigcap \{F \cap X \mid F \in \mathcal{F}\} = \varnothing$, and let \mathcal{G} be the filter on X generated by $\{F \cap X \mid F \in \mathcal{F}\}$. Then \mathcal{G} is completely regular, so there is a maximal completely regular filter \mathcal{H} on X such that $\mathcal{G} \subset \mathcal{H}$, and $\bigcap \{H \mid H \in \mathcal{H}\} = \varnothing$. Then $\mathcal{H} \in X' - X$, and since $\mathcal{G} \subset \mathcal{H}$, $F \cap X \cap H \neq \varnothing$, for every $F \in \mathcal{F}$ and $H \in \mathcal{H}$. Therefore, $F \cap H \neq \varnothing$, for every $F \in \mathcal{F}$ and $H \in \mathcal{H}$. This implies \mathcal{H} is in the adherence of \mathcal{F}, for $\{V^* \mid V \text{ is open in } X\}$ is closed under the taking of finite intersections and so actually is a base for the topology of X'. As \mathcal{F} is completely regular, $\varnothing \neq \bigcap \{F \mid F \in \mathcal{F}\}$.

(iii) A filter \mathcal{G} on a topological space E is called open provided that it has a base consisting of open sets. An open filter \mathcal{G} is called connected provided that whenever $O \cup P \in \mathcal{G}$, O and P disjoint open sets, either $O \in \mathcal{G}$ or $P \in \mathcal{G}$. In [4] it is shown that a maximal completely regular filter on a space E is connected. The principal result of [2] is: Let F be an extension space of E each of whose trace filters is connected. Then F is locally connected if and only if E is locally connected and each trace filter has a base consisting of connected open sets.

(iv) By (iii) X' is not locally connected unless X is locally connected. Suppose that X is not pseudocompact, and let Y be the completely regular Hausdorff space which has the same points as X, and whose topology is determined by $C(X)$, or, equivalently, $C(X, R)$, where R is the set of all real numbers. Then $C(X, R) = C(Y, R)$, so Y is not pseudocompact.

In [10] Glicksberg proved that if Z is a completely regular space, then the following are equivalent:

(a) Z is pseudocompact.

(b) For every sequence $\{V_n\}$ of nonempty open sets with disjoint closures, $\{V_n\}$ has a cluster point, that is, a point x such that for every m and neighborhood V of x there exists an $n \geq m$ for which $V \cap V_n \neq \varnothing$.

In [11] it was noted that (b) is equivalent to the condition:

(c) For every sequence $\{V_n\}$ of nonempty open sets with disjoint closures, $\bigcup \{V_n\}$ is not closed if $\{V_n\}$ is infinite. Therefore, since the space Y is completely regular, but not pseudocompact, it fails to satisfy (c).

Altering slightly Banaschewski's proof in [2] (that the Stone-Čech compactification of a completely regular Hausdorff space Z is not locally connected unless Z satisfies (c)), we shall show that X' cannot be locally connected. A corollary to Banaschewski's method of proof is: If Z is a completely regular space which does
not satisfy (c), then there is a sequence of nonempty open sets $O(i, k) \subseteq Z$ ($i = 1, 2, \ldots; k = 1, 2, \ldots$) with the following properties: for all i, j, k, ℓ, $i \neq j$ implies $O(i, k) \cap O(j, \ell) = \emptyset$; for all i, j, k, ℓ, $j \geq k$ implies $O(i, j) \subseteq O(i, k)$; the filter \mathcal{F} generated by the sets $\bigcup \{O(s, i) \mid s \geq i\}$, $i = 1, 2, \ldots$ is a completely regular filter on Z with empty adherence.

As Y is completely regular and does not satisfy (c), we may choose a filter \mathcal{G} on Y and sets $O(i, k) \subseteq Y$ as above. Since X and Y have the same points, and since the topology of Y is weaker than the topology of X, \mathcal{G} is a completely regular filter on X. If $\bigcap \{C \mid C \in \mathcal{G}\} = \emptyset$, so there is a trace filter \mathcal{F} of X' such that $\mathcal{G} \subseteq \mathcal{F}$. By an argument identical to one given in [2], since X and Y have the same points, and since the topology of Y is weaker than the topology of X, \mathcal{G} is a completely regular filter on X. If $\mathcal{F} \subseteq \bigcup \{O(s, i) \mid s \geq i\}$, some i, then necessarily $\mathcal{F} \subseteq O(s, i)$, some $s \geq i$, so

$$F \cap \left[\bigcup \{O(t, s+1) \mid t \geq s+1\} \right] = \emptyset,$$

from which it follows that $F \notin \mathcal{F}$. By (iii) X' cannot be locally connected.

(v) is a consequence of (i) and the fact that X' is an extension space of X.

The known proof (see [9]) that (vi) holds for a completely regular Hausdorff space X also shows that (vi) holds for a completely Hausdorff space X which is not necessarily regular.

(vii) If $y \in Y - h(X)$, we shall denote by $\mathcal{Y}(y)$ and $\mathcal{W}(y)$ the following filters:

$\mathcal{Y}(y)$ is the filter on Y generated by $\{U \mid U$ is open in $Y, y \in U\}$, and for some $f \in C(Y)$, $f(y) = 0$, $f(Y - U) = 1$, and $f(Y) \subseteq \{0, 1\}$; $\mathcal{W}(y)$ is the filter on $h(X)$ generated by $\{U \cap h(X) \mid U \in \mathcal{Y}(y)\}$. If V is open in $h(X)$, \mathcal{V} is defined to be $V \cap \{y \in Y - h(X) \mid V \in \mathcal{Y}(y)\}$. We shall show that the following hold: (a) for each $y \in Y - h(X)$, $\mathcal{Y}(y)$ is a maximal completely regular filter on Y; (b) for each $y \in Y - h(X)$, $\mathcal{W}(y)$ is a maximal completely regular filter on $h(X)$; (c) the function e defined by $e(y) = h^{-1}(\mathcal{W}(y))$ is a one-to-one mapping of $Y - h(X)$ onto the set of all trace filters of X'; (d) if V is open in $h(X)$, then \mathcal{V} is open in Y; (e) if V is open in X, then for each $y \in [h(V)]^* - h(V)$, $e(y) \in \mathcal{V}^*$; (f) the function g defined by $g(h(x)) = x$ if $x \in X$, and $g(y) = e(y)$ if $y \in Y - h(X)$ is a one-to-one continuous mapping of Y onto X'.

(a) Let $y \in Y - h(X)$, and suppose that \mathcal{F} is a completely regular filter on Y such that $\mathcal{Y}(y) \subseteq \mathcal{F}$. Since Y is completely Hausdorff-compact, $\bigcap \{F \mid F \in \mathcal{F}\} \neq \emptyset$. Since Y is completely Hausdorff, $\{y\} = \bigcap \{V \mid V \in \mathcal{Y}(y)\}$. As $\bigcap \{F \mid F \in \mathcal{F}\} \subseteq \bigcap \{V \mid V \in \mathcal{Y}(y)\}$, $y \in \bigcap \{F \mid F \in \mathcal{F}\}$, so $\mathcal{F} \subseteq \mathcal{Y}(y)$.

(b) Let $y \in Y - h(X)$, and suppose that \mathcal{G} is a completely regular filter on $h(X)$ such that $\mathcal{W}(y) \subseteq \mathcal{G}$. Take $G \in \mathcal{G}$, and choose a set $G' \subseteq G$ in \mathcal{G} and a function $f \in C(h(X))$ such that $f(h(X)) \subseteq \{0, 1\}$, $f(G') = 0$, and $f(h(X) - G) = 1$. Let $g \in C(Y)$, $g|h(X) = f$. Since $\mathcal{W}(y) \subseteq \mathcal{G}$, $G' \cap U \neq \emptyset$ for all $U \in \mathcal{Y}(y)$, so if $0 < t$, $g^{-1}([0, t)) \cap U \neq \emptyset$ for all $U \in \mathcal{Y}(y)$. As $\mathcal{Y}(y)$ is a maximal completely regular filter on Y, $g^{-1}([0, t)) \subseteq \mathcal{Y}(y)$ for each $t > 0$. Therefore, $G \in \mathcal{W}(y)$, for $G = f^{-1}([0, 1]) = h(X) \cap g^{-1}([0, 1]) \in \mathcal{W}(y)$, so $\mathcal{G} \subseteq \mathcal{W}(y)$.

(c) Let \(y \in Y - h(X) \). By (b) \(\mathcal{W}(y) \) is a maximal completely regular filter on \(h(X) \). Since \(Y \) is completely Hausdorff, \(\bigcap \{ W \mid W \in \mathcal{W}(y) \} = \emptyset \). As \(h^{-1} \) is a homeomorphism of \(h(X) \) onto \(X \), \(h^{-1}(\mathcal{W}(y)) \) is a maximal completely regular filter on \(X \), and \(\emptyset = \bigcap \{ W \mid W \in h^{-1}(\mathcal{W}(y)) \} \). Hence \(e(y) \) is a trace filter of \(X' \).

Take \(y, z \in Y - h(X), y \neq z \). Since \(Y \) is completely Hausdorff, we may choose a function \(f \in C(Y) \) such that \(f(y) \neq f(z) \). For each \(t > 0 \), let \(O(t) = \{ s \in Y \mid f(y) - t < f(s) < f(y) + t \} \). Then \(O(t) \in \mathcal{V}(y) \), each \(t > 0 \). Take \(u > 0 \) so that \(z \notin O(u) \), and choose a number \(0 < v < u \) and a function \(g \in C(Y) \) such that \(g(Y) = [0, 1] \), \(g(O(v)) = 0 \), and \(g(Y - O(u)) = 1 \). Define \(j \) by \(j(s) = 1 - g(s) \) if \(s \in Y \). Then \(j \in C(Y), j(Y) \subset [0, 1], j(z) = 0 \), \(j(Y - (Y - O(v))) = 1 \), and \(z \in Y - O(v) \), so \(Y - O(v) \in \mathcal{V}(z) \).

\(O(v) \cap h(X) \in \mathcal{W}(y), h(X) - O(v) \in \mathcal{W}(z), \) and \(O(v) \cap h(X) \cap (h(X) - O(v)) = \emptyset \), so \(\mathcal{W}(y) \neq \mathcal{W}(z) \). As \(h^{-1} \) is one-to-one, \(e(y) = h^{-1}(\mathcal{W}(y)) \neq h^{-1}(\mathcal{W}(z)) = e(z) \).

Let \(\mathcal{F} \) be a trace filter of \(X' \). We wish to show that there is a point \(y \in Y - h(X) \) for which \(e(y) = \mathcal{F} \). Since \(h \) is a homeomorphism, \(h(\mathcal{F}) \) is a maximal completely regular filter on \(h(X) \), and \(\emptyset = \bigcap \{ F \mid F \in h(\mathcal{F}) \} \). Let \(Z = \{ f \in C(h(X)) \mid f(h(X)) \subset [0, 1] \} \), and for some \(G, G' \in h(\mathcal{F}), G' \subset G, f(G') = 0 \), and \(f(h(X) - G) = 1 \). For each \(f \in Z \), denote by \(f' \) the extension of \(f \) in \(C(Y) \), and let \(Z' = \{ f' \mid f \in Z \} \). For each \(f' \in Z' \) and \(t > 0 \), let \(V(f', t) = f'^{-1}([0, t]) \), and let \(\mathcal{G} \) be the filter on \(Y \) generated by the set of all finite intersections of elements of \(\{ V(f', t) \mid f \in Z' \) and \(t > 0 \)\}. By an argument similar to one given in the proof of Theorem 1, \(\mathcal{G} \) can be shown to be a completely regular filter on \(Y \). Let \(\mathcal{H} \) be a maximal completely regular filter on \(Y \) such that \(\mathcal{G} \subset \mathcal{H} \). Since \(Y \) is completely Hausdorff-complete, \(\bigcap \{ H \mid H \in \mathcal{H} \} \neq \emptyset \). If \(G \in h(\mathcal{H}), G \supseteq f^{-1}([0, \frac{1}{2}]) \), some \(f \in Z \), then \(x \in h(X) \cap \bigcap \{ H \mid H \in \mathcal{H} \} \supseteq \bigcap \{ G \mid G \in \mathcal{G} \} \cap h(X) \subset \bigcap \{ G \mid G \in h(\mathcal{F}) \} = \emptyset \). Thus there is a point \(y \in Y - h(X) \cap \bigcap \{ H \mid H \in \mathcal{H} \} \). The maximality of \(\mathcal{H} \) implies that \(\mathcal{H} = \mathcal{W}(y) \). Since \(\mathcal{F} \) is maximal, \(\mathcal{W}(y) \) is maximal, and \(\mathcal{F} = \mathcal{W}(y) \). The point \(y \) then has the property that \(e(y) = h^{-1}(\mathcal{W}(y)) = h^{-1}(\mathcal{F}) \).

(d) If \(y \in Y - h(X) \), \(\mathcal{W}(y) \) and the trace filter \(\mathcal{F}(y) \) of \(Y \) are identical: by definition \(\mathcal{W}(y) \subset \mathcal{F}(y) \); by hypothesis \(\mathcal{F}(y) \) is a completely regular filter on \(h(X) \); (b) then implies that \(\mathcal{W}(y) = \mathcal{F}(y) \).

In general, if \(S \) is a topological space, if \(T \) is an extension space of \(S \), and if \(V \) is open in \(S \), then \(V \cup \{ t \in T - S \mid V \in \mathcal{F}(t) \} \) is open in \(T \) [2].

(e) If \(V \) is open in \(X \), then for each \(y \in [h(V)]^* \), \(h(V) \in \mathcal{W}(y) \), so \(V = h^{-1}(h(V)) \in h^{-1}(\mathcal{W}(y)) = e(y) \), and hence \(e(y) \in V^* \).

(f) Since \(h^{-1} \) is a one-to-one mapping of \(h(X) \) onto \(X \), (c) implies that \(g \) is a one-to-one mapping of \(Y \) onto \(X' \). Let \(y \in Y - h(X) \), and suppose that \(W \) is open in \(X' \), with \(g(y) \in W \). Then there is a set \(V \) open in \(X \) such that \(g(y) \in V^* \subset W \). By (d) \([h(V)]^* \) is open in \(Y \), and \(y \in [h(V)]^* \), for \(g(y) \in V^* \) implies \(V \) in \(g(y) \) so that \(h(V) \in \mathcal{W}(y) \). As a consequence of (e) and the definition of \(g, g([h(V)]^*)^* \subset V^* \subset W \).
Thus g is continuous at y. The proof that g is continuous at each point of $h(X)$ is similar.

We conclude the proof of Theorem 4 with the remark that proofs of (i) and (ii) different from those given here can be obtained which depend on the properties of the Stone-Čech compactification Y' of the completely regular Hausdorff space Y whose points are those of X and whose topology is determined by $C(X)$.

The author does not know if the converse of (iv) in Theorem 4 holds, but, as the following example shows, if X is a locally connected, pseudocompact, completely Hausdorff space, and if Y is a completely Hausdorff-complete extension space of X such that each function in $C(X)$ has an extension in $C(Y)$, then Y is not necessarily locally connected.

Example 5. The example given here is a slight modification of an unpublished one due to L. B. Treybig of a countably compact space (Y, T), where Y is “the long interval”, and T is a topology which is stronger than the usual order topology put on Y.

Description of the space. Let Ω be the first ordinal with an uncountable number of predecessors, let Ω' be the set of all ordinals less than Ω, and for each $x \in \Omega'$, let $I(x)$ be $\{x\} \times$ an open interval in the real line. Set $X = \Omega' \cup \{I(x) | x \in \Omega'\}$, and for $x, y \in X$, define $x < y$ if (1) $x, y \in \Omega'$, and $x < y$ in Ω', or (2) $x \in \Omega'$, $y \in I(s)$, and $x \leq s$ in Ω', or (3) $x \in I(r)$, $y \in \Omega'$, and $r < y$ in Ω', or (4) $x \in I(r)$, $y \in I(s)$, and $r < s$ in Ω', or (5) $x \in I(r)$, $y \in I(s)$, and $x < y$ in $I(s)$. Let Ω be the order topology on X. Let $Y = X \cup \{\Omega\}$, define $x < \Omega$ if $x \in X$, and let \mathcal{R} be the order topology on Y. If $x \in X$, $O(x)$ will denote $\{y \in Y | x < y\}$. \mathcal{F} will denote the topology on Y which is generated by $\{B | B \in \mathcal{R}, \text{or for some } x \in X, B = O(x) - \Omega'\}$.

The spaces (X, Ω) and (Y, T) have the following properties.

(i) (X, Ω) is a countably compact (hence pseudocompact), locally connected, completely regular Hausdorff space.

(ii) (Y, T) is an extension space of (X, Ω).

(iii) The Stone-Weierstrass theorem holds for (Y, T).

(iv) Every continuous real valued function on (X, Ω) has an extension in $C((Y, T))$.

(v) (Y, T) is not locally connected.

Proof. (i) is well known [13]. (ii) holds, for Ω' is closed in (X, Ω), and $X \cap (O(x) - \Omega') \neq \emptyset$, each $x \in X$. As a consequence of the fact that each function in $C(\Omega')$ is eventually constant [9], (Y, \mathcal{R}) is the Stone-Čech compactification of (X, Ω), so since $\mathcal{R} \subseteq T$, and (X, Ω) is pseudocompact, (iv) follows. (v) is obvious. We prove (iii).

As (Y, \mathcal{R}) is compact Hausdorff, and $\mathcal{R} \subseteq T$, (Y, T) is completely Hausdorff. To show that every completely regular filter on (Y, T) has nonempty adherence, it suffices to show that every open filter on (Y, T) has nonempty adherence.

Suppose that \mathcal{F} is an open filter on (Y, T) such that $\Omega \notin \bigcap\{F | F \in \mathcal{F}\}$. Then there is a set $F \in \mathcal{F} \cap T$ with the property that for some $x \in X$, $F \cap (O(x) - \Omega') = \emptyset$. Therefore, $F \cap ((O(x) - \Omega'))^c = \emptyset$. Clearly, each point of Ω' is a limit point.
of \(O(x) - \Omega' \), so \(\Omega' \subseteq [O(x) - \Omega']^- \). Hence \(F \cap O(x) \subseteq F \cap [(O(x) - \Omega')]^- = \emptyset \). As \(\emptyset \notin \mathcal{F} \), and \(F \cap G \in \mathcal{F} \), each \(G \in \mathcal{F} \), \(G \cap (Y - O(x)) \neq \emptyset \), each \(G \in \mathcal{F} \). Since \(Y - O(x) \) is compact, it follows that \(\bigcap \{ G \cap (Y - O(x)) | G \in \mathcal{F} \} \neq \emptyset \).

In [8] it is noted that a Hausdorff space is absolutely closed if and only if every open filter on it has nonempty adherence. As a consequence of the proof of (iii) and the fact that \((Y, \mathcal{F})\) is a one-point extension space of a countably compact space, one obtains the

Corollary 6. An absolutely closed, countably compact, completely Hausdorff space is not necessarily minimal Hausdorff.

As noted in [3], there does not exist a noncompact, completely regular Hausdorff space for which the Stone-Weierstrass theorem holds. It can be shown, however, that there exists a noncompact regular space (as used in this paper, the condition of regularity includes \(T_1 \) separation) for which the Stone-Weierstrass theorem holds.

An open filter is called regular if it has a base consisting of closed sets. A regular space is regular closed provided that it is closed in every regular space in which it can be embedded.

In [12] Herrlich proved that a regular space is regular closed if and only if each regular filter on it has nonempty adherence. He also showed that there is a regular space (a subspace of the minimal regular noncompact space constructed in [7]), which we shall denote by \((S, \mathcal{W})\), with the property that \((S, \mathcal{W})\) is regular closed, but not minimal regular. In particular, he showed that there exists a topology \(\mathcal{V} \subset \mathcal{W} \), \(\mathcal{V} \neq \mathcal{W} \), such that \((S, \mathcal{V})\) is a compact Hausdorff space.

As a consequence of the fact that every completely regular filter is a regular filter, every completely regular filter on \((S, \mathcal{W})\) has nonempty adherence. In addition, \((S, \mathcal{W})\) is completely Hausdorff, for \((S, \mathcal{V})\) is completely Hausdorff, and \(\mathcal{V} \subset \mathcal{W} \). \((S, \mathcal{W})\) is thus a noncompact regular closed space for which the Stone-Weierstrass theorem holds.

Two questions which one might consider are the following:
(i) If the Stone-Weierstrass theorem holds for a regular space \(R \), is \(R \) necessarily regular closed?
(ii) Does there exist a regular space \(R \) such that the Stone-Weierstrass theorem holds for \(R \), but \(R \) is not second category?

As Example 8 will show, not every space for which the Stone-Weierstrass theorem holds is second category. If, however, the answer to (i) is yes, then as a consequence of Theorem 7, the answer to (ii) must be no.

Theorem 7. Every regular closed space is second category.

Proof. A regular filter base is a filter base consisting of open sets which is equivalent to a filter base consisting of closed sets. In [7] it is shown that on a minimal regular space \((\alpha \) every regular filter base which has a unique adherent point is convergent, and \(\beta \) every regular filter base has an adherent point. The proof given
in [5] that a minimal regular space is second category depends only on the fact that
\((\beta)\) holds on a minimal regular space. Clearly, \((\beta)\) holds on a topological space \(X\) if
and only if every regular filter on \(X\) has an adherent point, and, as noted above,
Herrlich has proved that every regular filter on a regular closed space has an
adherent point.

Example 8. Let \(X = [0, 1]\), let \(\mathcal{V}\) be the usual topology on \(X\), let \(Q\) be the set
of all rational numbers in \(X\), and define \(\mathcal{W}\) to be the weakest topology on \(X\) such
that \(\mathcal{V} \subseteq \mathcal{W}\) and \(Q \in \mathcal{W}\).

As noted in [6], \((X, \mathcal{W})\) is an absolutely closed space which is not minimal
Hausdorff. In addition, \(\mathcal{V} \subseteq \mathcal{W}\), so \((X, \mathcal{W})\) is completely Hausdorff, and the Stone-
Weierstrass theorem holds for \((X, \mathcal{W})\).

For each \(q \in Q\), the set \(F(q) = \{q\} \cup (X - Q)\) is a closed, nowhere dense set in
\((X, \mathcal{V})\), and \(X = \bigcup \{F(q) \mid q \in Q\}\), so \((X, \mathcal{W})\) is not second category.

References

 (1964), 78–82.
 (1963), 454–458.
 1960.
 253–261.

Tulane University,
New Orleans, Louisiana