THE SPECTRA OF OPERATORS HAVING RESOLVENTS OF FIRST-ORDER GROWTH

BY

C. R. PUTNAM

1. Introduction. Throughout this paper, \mathcal{H} will denote an infinite-dimensional Hilbert space of vectors x, y, \ldots, with inner product $\langle x, y \rangle$, and T will denote a bounded operator on \mathcal{H} with spectrum $\text{sp}(T)$. As usual, let $\|T\| = \sup \|Tx\|$ where $\|x\| = 1$. If λ does not belong to $\text{sp}(T)$, put $R_\lambda = (T - \lambda I)^{-1}$, and let $d(\lambda)$ denote the distance from λ to $\text{sp}(T)$, thus,

\begin{equation}
 d(\lambda) = \inf |\lambda - \mu|, \quad \text{where } \mu \in \text{sp}(T).
\end{equation}

There will be studied certain properties of points λ_0 in the boundary of $\text{sp}(T)$ when the resolvent R_λ satisfies the growth condition

\begin{equation}
 d(\lambda)\|R_\lambda\| \to 1 \quad \text{as } \lambda \to \mu
\end{equation}

for all μ in the boundary of $\text{sp}(T)$ and in some neighborhood of λ_0.

It is well known and easy to show that for any T one has $d(\lambda)\|R_\lambda\| \geq 1$ for all $\lambda \notin \text{sp}(T)$ and that $d(\lambda)\|R_\lambda\| \to 1$ as $|\lambda| \to \infty$. The extreme possibility

\begin{equation}
 d(\lambda)\|R_\lambda\| = 1 \quad \text{for } \lambda \notin \text{sp}(T),
\end{equation}

which of course implies (1.2), certainly holds for normal operators as well as for others which are "nearly" normal; for instance, it is satisfied by seminormal operators T, so that

\begin{equation}
 T^*T - TT^* \text{ is semidefinite.}
\end{equation}

See Stampfli [11], also the references given there to Donoghue and Nieminen.

Recall that a sequence $\{x_n\}$ of vectors is said to converge weakly to a limit x as $n \to \infty$ (notation $w: x_n \to x$) if $\langle x_n, y \rangle \to \langle x, y \rangle$ as $n \to \infty$ for all y in \mathcal{H}. It will be convenient to define for any bounded operator T the sets $A(T)$ and $B(T)$ by

\begin{equation}
 A(T) = \{ \lambda: T_\lambda x_n \to 0, T_\lambda^* y_n \to 0 \text{ for some pair of sequences } \{x_n\}, \{y_n\} \text{ satisfying } \|x_n\| = \|y_n\| = 1 \text{ and } w: x_n \to 0, w: y_n \to 0 \text{ as } n \to \infty \}
\end{equation}

and

\begin{equation}
 B(T) = \{ \lambda: T_\lambda x_n \to 0, T_\lambda^* x_n \to 0 \text{ for some sequence } \{x_n\} \text{ satisfying } \|x_n\| = 1 \text{ and } w: x_n \to 0 \text{ as } n \to \infty \}.
\end{equation}

(Here and in the sequel, $T_\lambda = T - \lambda I$.)

Received by the editors April 17, 1967.

(1) This work was supported by a National Science Foundation research grant.
Let \(W(T) \) be the set of points of \(\text{sp} \ (T) \) which are invariant under all completely continuous perturbations of \(T \), thus, \(W(T) = \bigcap_c \text{sp} \ (T + C) \), where \(C \) is completely continuous. (For a characterization of \(W(T) \), see Schechter [9].) It is clear that

\[
B(T) \subset A(T) \subset W(T).
\]

For any \(T \), let \(E(T) \) denote the set of limit (cluster) points of \(\text{sp} \ (T) \) together with all points of the point spectrum of \(T \) of infinite multiplicity. Then, in case \(T \) is normal, \(E(T) \) constitutes the essential spectrum of \(T \) and, according to Weyl's theorem (Weyl [12]), \(E(T) = B(T) \).

It is easy to see that if \(T \) is normal, \(E(T) = W(T) \). It was shown by Coburn [2], using properties of \(W(T) \) given in Schechter [9], that this last equation remains valid even for seminormal operators. The corresponding assertion, even for the direct sum of two seminormal operators, is false however. In fact, if \(V \) denotes the isometric operator on the sequential Hilbert space \(\mathfrak{H} \) of vectors \(x = (a_1, a_2, \ldots) \) defined by \(V: (a_1, a_2, \ldots) \rightarrow (0, a_1, a_2, \ldots) \), then \(V \) and \(V^* \) are seminormal, each has as its spectrum the unit disk \(|\lambda| \leq 1 \) on \(\mathfrak{H} \) and hence so also does \(T_0 = V \oplus V^* \). Then, \(\text{sp} \ (T_0) = \mathfrak{H} \oplus \mathbb{R} \), and, in particular, \(E(T_0) = \text{sp} \ (T_0) = \{ \lambda : |\lambda| \leq 1 \} \). Although \(T_0 \) is not seminormal, it does satisfy (1.3), since \(V \) and \(V^* \) do separately. But there exist completely continuous operators \(C \), even with \(C \) arbitrarily small, on \(\mathfrak{H} = \mathbb{R} \oplus \mathbb{R} \), such that \(\text{sp} \ (T + C) \) is the boundary, \(|\lambda| = 1 \), of \(\text{sp} \ (T_0) \); see Putnam [7] (also Halmos [5, Solutions 85, 144]). Thus \(W(T_0) \) is a subset of the set \(|\lambda| = 1 \). It follows from Theorem 2 below however that the set \(|\lambda| = 1 \) is contained in \(B(T_0) \) and, since \(B(T_0) \subset W(T_0) \), \(W(T_0) \) is precisely the set \(|\lambda| = 1 \).

There will be proved the following theorems:

Theorem 1. Let \(T \) be a bounded operator and let \(\lambda_0 \) be a nonisolated point of the boundary of \(\text{sp} \ (T) \). Then \(\lambda_0 \) belongs to the set \(A(T) \) of (1.5).

Theorem 2. Let \(T \) be a bounded operator and let \(\lambda_0 \) be a nonisolated point of the boundary of \(\text{sp} \ (T) \) for which (1.2) holds. Then \(\lambda_0 \) belongs to the set \(B(T) \) of (1.6).

It follows from Theorem 1 and (1.7) that \(W(T) \) always contains the set of nonisolated boundary points of \(\text{sp} \ (T) \). That \(W(T) \) may coincide with this latter set, even if (1.3) holds, is seen from the example mentioned above.

In §4, some other spectral implications of Theorems 1 and 2 will be derived.

Remarks. The author is indebted to M. Schechter for the present formulation of Theorem 1 and its proof below. The author's original version involved an added hypothesis on the growth of the resolvent as well as a considerably longer proof.

2. Proof of Theorem 1. Since \(\lambda_0 \) is a nonisolated boundary point of \(\text{sp} \ (T) \) if and only if \(\lambda_0 \) is a nonisolated boundary point of \(\text{sp} \ (T^*) \), it is clearly sufficient to prove the existence of the sequence \(\{x_n\} \), for \(\lambda = \lambda_0 \), in (1.5). Also, according to Wolf [13, p. 215], the existence of such a sequence is equivalent to the statement that either \(\Re(T_{\lambda_0}) \) is not closed or that the dimension \(\alpha(T_{\lambda_0}) \) of the null space of \(T_{\lambda_0} \) is
infinite. The proof will be completed then by showing that the assumptions that $\Re(T_{\lambda_0})$ be closed and that $\alpha(T_{\lambda_0})$ be finite lead to a contradiction.

To this end, note that $\Re(T_\lambda)$ is closed and $\alpha(T_\lambda)$ is finite for all λ sufficiently close to λ_0; see Wolf [13, p. 216]. Also, the range of a bounded operator is closed if and only if the range of its adjoint is also closed; cf. Goldberg [4, p. 95]. Since $\alpha(T_{\lambda_0})$ and $\alpha(T_{\lambda_0}^*)$ are not both infinite, so that T_{λ_0} has an index, then $\alpha(T_\lambda)$ and $\alpha(T_\lambda^*)$ are constant on a punctured neighborhood of λ_0. This follows from results of Gohberg and Kreîn [3]; see Goldberg [4, p. 114], wherein can be found a generalization. Since λ_0 is a boundary point of the resolvent set of T it follows that for some $\delta > 0$, $\alpha(T_\lambda) = \alpha(T_\lambda^*) = 0$, and both $\Re(T_\lambda)$ and $\Re(T_\lambda^*)$ are closed for $0 < |\lambda - \lambda_0| < \delta$. Thus the set $\{\lambda : 0 < |\lambda - \lambda_0| < \delta\}$ belongs to the resolvent set of T, a contradiction.

3. Proof of Theorem 2. For use below it will be convenient to have the following

Lemma. Let $\lambda_n \to \lambda_0$ as $n \to \infty$ and suppose that for each n, there exists a sequence (x_{nk}), $k=1, 2, \ldots$, of unit vectors satisfying $w: x_{nk} \to 0$ and $T_{\lambda_n} x_{nk} \to 0$ as $k \to \infty$. Then there exists a sequence (x_n) of the form $x_n = x_{nk_n}$ ($k_1 < k_2 < \cdots$) satisfying

$$\tag{3.1} \|x_n\| = 1, \quad w: x_n \to 0 \quad \text{and} \quad T_{\lambda_0} x_n \to 0 \quad \text{as} \quad n \to \infty.$$

Proof. Let \mathfrak{M} denote the (separable) space spanned by (x_{nk}) for $n, k=1, 2, \ldots$, and let $\mathfrak{N} = \langle \phi_j \rangle$ be a complete (countable) orthonormal system spanning \mathfrak{M}. It is clear that one can choose $k = k_n$ satisfying $k_1 < k_2 < \cdots$ and so that $\|(x_{nk_n}, \phi_j)\| < 1/n$ for $j=1, 2, \ldots, n$ and $\|T_{\lambda_n} x_{nk_n}\| < 1/n$. If x is any vector in \mathfrak{N}, then $x = y + z$, where $y \in \mathfrak{M}$ and $z \in \mathfrak{N}$. Then $(x, x_{nk_n}) = (y, x_{nk_n}) = 0$ as $n \to \infty$, and it is clear that the sequence (x_n) defined by $x_n = x_{nk_n}$ satisfies the required conditions. This completes the proof of the Lemma.

Next, let an eigenvalue λ of any operator T be called a normal eigenvalue if λ is an eigenvalue of T^* and if the null spaces of T_λ and T_λ^* coincide. It was proved by Stampfli [11] that if T satisfies (1.3) then any isolated point of $\text{sp}(T)$ must be a normal eigenvalue. (The special case in which T satisfies (1.4) was treated in Stampfli [10].) The same argument shows that if λ_0 is an isolated point of $\text{sp}(T)$ and if $d(\lambda) \|R_\lambda\| \to 1$ as $\lambda \to \lambda_0$ then λ_0 is a normal eigenvalue.

In order to prove Theorem 2, note that if there exists a sequence (λ_n) of distinct isolated points λ_n in $\text{sp}(T)$ satisfying $\lambda_n \to \lambda_0$ as $n \to \infty$ then the λ_n must be normal eigenvalues. Hence $(x_n, x_{n}) = 0$ if $T_{\lambda_n} x_n = 0$ and $T_{\lambda_n} x_m = 0$ and $n \neq m$. Thus (x_n) is an infinite orthonormal sequence satisfying $T_{\lambda_0} x_n \to 0$ and $T_{\lambda_0}^* x_n \to 0$ (and, of course, $w: x_n \to 0$), as $n \to \infty$, so that the assertion of Theorem 2 follows.

If λ_0 is not the limit of a sequence of isolated points of $\text{sp}(T)$ then it is easy to see that there exists a sequence (λ_n) of distinct points satisfying $\lambda_n \to \lambda_0$ as $n \to \infty$, such that each λ_n is a nonisolated boundary point of $\text{sp}(T)$ and, for each λ_n, there is a disk C_n containing λ_n on its boundary and having an interior free of points of
sp (T). By Theorem 1, for each \(\lambda_n \), there exists a sequence \(\{x_{nk}\} \), \(k = 1, 2, \ldots \), of unit vectors satisfying \(w: x_{nk} \to 0 \) and \(T_{\lambda_n} x_{nk} \to 0 \) as \(k \to \infty \). It will next be shown that also \(T^*_n x_{nk} \to 0 \) as \(k \to \infty \).

For \(\lambda \notin \text{sp} (T) \), \(T_{\lambda_n} x_{nk} = T_{\lambda_n} x_{nk} + (\lambda_n - \lambda) x_{nk} \) and hence, on multiplying by \(R_{\lambda} \),

\[
(\lambda - \lambda_n) R_{\lambda} + I)x_{nk} \to 0 \quad \text{as} \quad k \to \infty,
\]

for \(\lambda, n \) fixed. But \(0 \leq \|(\lambda - \lambda_n) R_{\lambda}^* + I)x_{nk}\|^2 = |\lambda - \lambda_n|^2\|R_{\lambda}^* x_{nk}\|^2 + (x_{nk}, (\lambda - \lambda_n) R_{\lambda} x_{nk}) + ((\lambda - \lambda_n) R_{\lambda} x_{nk}, x_{nk}) + \|x_{nk}\|^2. \) In view of (3.2) this implies that

\[
\|(\lambda - \lambda_n) R_{\lambda}^* + I)x_{nk}\|^2 \leq |\lambda - \lambda_n|^2\|R_{\lambda}^* x_{nk}\|^2 - 1 + \eta_k,
\]

where \(\eta_k \to 0 \) as \(k \to \infty \) (for \(\lambda, n \) fixed).

Now, let \(r_n \) denote the radius of \(C_n \) containing the point \(\lambda_n \). Since \(d(\lambda) = |\lambda - \lambda_n| \) for \(\lambda \) on \(r_n \), it follows from (1.2) and (3.3) that for each \(\epsilon > 0 \) there exists a \(\delta_\epsilon > 0 \) and a positive integer \(N_\epsilon \) with the property that \(\|(\lambda - \lambda_n) R_{\lambda}^* + I)x_{nk}\| < \epsilon \) provided \(\lambda \) (fixed) is on \(r_n \) and \(0 < |\lambda - \lambda_n| < \delta_\epsilon, \ k > N_\epsilon. \) Since \(T_{\lambda}(\lambda - \lambda_n) R_{\lambda}^* + I) = T_{\lambda_n} \), it is clear that \(T_{\lambda_n} x_{nk} \to 0 \) as \(k \to \infty \).

Consequently, it has been shown that there exist \(\lambda_n \to \lambda_0 \) and sequences \(\{x_n\} \) of unit vectors satisfying \(w: x_n \to 0 \) and both limit relations \(T_{\lambda_n} x_{nk} \to 0 \) and \(T_{\lambda_n}^* x_{nk} \to 0 \) as \(k \to \infty \). An application of the Lemma then yields the existence of a sequence \(\{x_n\} \) of unit vectors satisfying \(w: x_n \to 0 \) and for which both \(T_{\lambda_0} x_n \to 0 \) and \(T_{\lambda_0}^* x_n \to 0 \) as \(n \to \infty \). Thus \(\lambda_0 \) is in the set \(B(T) \) of (1.6) and the proof of Theorem 2 is now complete.

4. Some spectral properties. Let \(T \) be seminormal or, more generally, satisfy (1.3), or even

\[
d(\lambda) = \|R_{\lambda}\| \to 1 \quad \text{as} \quad \lambda \to \lambda_0 \quad (\lambda \notin \text{sp} (T)),
\]

for all \(\lambda_0 \) in the boundary of \(\text{sp} (T) \). If \(C = T^* T - T T^* \), it is clear that

\[
C = T^*_\lambda T_{\lambda} - T_{\lambda} T^*_\lambda \quad \text{for arbitrary} \ \lambda.
\]

Hence, as a consequence of Theorem 2, if the boundary of \(\text{sp} (T) \) contains at least one nonisolated point (that is, if \(\text{sp} (T) \) is an infinite set), there exists a sequence \(\{x_n\} \) of unit vectors satisfying \(w: x_n \to 0 \) and \(C x_n \to 0 \) as \(n \to \infty \). This result holds also if \(\text{sp} (T) \) contains only a finite number of points, for, as noted earlier, each such point must be a normal eigenvalue, and one of these, therefore, must be of infinite multiplicity (the Hilbert space being infinite dimensional). Hence \(\{x_n\} \) can be chosen to be an orthonormal sequence of eigenvectors corresponding to this eigenvalue. Thus, there has been proved the following:

Theorem 3. If \(T \) is a bounded operator satisfying (4.1) for all \(\lambda_0 \) in the boundary of \(\text{sp} (T) \), then \(0 \) belongs to the essential spectrum of \(T^* T - T T^* \).

Remarks. It is seen that if, in particular, \(T \) is seminormal then it is necessary that \(0 \) belong to the essential spectrum of \(T^* T - T T^* \). It is easy to see also that if \(S \) is any
compact set of nonnegative (or nonpositive) real numbers containing 0, then there exists a seminormal operator T for which $sp(T^*T - TT^*) = S$. In fact, if V is the isometric operator considered in §1, it is seen that $D = V^*V - VV^*$ is the diagonal matrix all elements of which are 0 except for 1 in the (1, 1) position. In particular, $sp(D)$ consists of 0 and 1. If $\{r_n\}$ is any countable set of nonnegative real numbers whose closure is S it is seen that for the direct sum operator $T = \bigoplus_{n=1}^{\infty} r_n^1/2 V$ on the space $\mathcal{H} = \bigoplus_{n=1}^{\infty} \mathbb{R}$, one has $sp(T^*T - TT^*) = S$.

Added in proof. In fact, it follows from a result of H. Radjavi ([J. Math. Mech. 16 (1966), 19–26]) that a nonnegative operator C on an infinite-dimensional separable Hilbert space has 0 in its essential spectrum if and only if it is of the form $C = T^*T - TT^*$.

Another consequence of Theorem 2 is the following:

Theorem 4. Let T be a bounded operator satisfying (4.1) for all λ_0 in the boundary of $sp(T)$ and let T have the Cartesian representation $T = H + iJ$, where H and J are selfadjoint. Then the projections of $sp(T)$ onto the x and y axes are, respectively, contained in the sets $sp(H)$ and $sp(J)$.

In order to see this, it is sufficient to consider the operator $H (= \frac{1}{2}(T + T^*))$ only. Let $\lambda_0 \in sp(T)$. If λ_0 is an isolated point of $sp(T)$, it is a normal eigenvalue (cf. §3 above) and clearly $Re(\lambda_0)$ is in $sp(H)$. If λ_0 is not an isolated point of $sp(T)$ then it is clear that there exists some nonisolated boundary point λ_1 of $sp(T)$ satisfying $Re(\lambda_1) = Re(\lambda_0)$. Hence, by Theorem 2, $Re(\lambda_0)$ is in $sp(H)$, in fact, $Re(\lambda_0)$ is in the essential spectrum of H.

Remark. In case T is seminormal, that is, if (1.4) holds, the sets $sp(H)$ and $sp(J)$ are precisely the projections of $sp(T)$ onto the x and y axes (Putnam [6]). Whether the corresponding assertion holds if the condition of seminormality is relaxed to (4.1) for all λ_0 in the boundary of $sp(T)$, or even to (1.3), is apparently not known.

An assertion related to that of Theorem 4 can be made for any operator T for which $C = T^*T - TT^*$ is completely continuous. For, by (4.2), it is clear that $A(T) = B(T)$. It follows from Theorem 1 that the projections of all nonisolated boundary points of $sp(T)$ onto the x and y axes belong to the spectra (even essential spectra) of H and J respectively.

References

Purdue University,
Lafayette, Indiana