ON HAMILTONIAN LINE-GRAPHS(1)

BY

GARY CHARTRAND

Introduction. The line-graph $L(G)$ of a nonempty graph G is the graph whose point set can be put in one-to-one correspondence with the line set of G in such a way that two points of $L(G)$ are adjacent if and only if the corresponding lines of G are adjacent. In this paper graphs whose line-graphs are eulerian or hamiltonian are investigated and characterizations of these graphs are given. Furthermore, necessary and sufficient conditions are presented for iterated line-graphs to be eulerian or hamiltonian. It is shown that for any connected graph G which is not a path, there exists an iterated line-graph of G which is hamiltonian.

Some elementary results on line-graphs. In the course of the article, it will be necessary to refer to several basic facts concerning line-graphs. In this section these results are presented. All the proofs are straightforward and are therefore omitted. In addition a few definitions are given.

If x is a line of a graph G joining the points u and v, written $x=uv$, then we define the degree of x by $\deg x=\deg u+\deg v-2$. We note that if w is the point of $L(G)$ which corresponds to the line x, then the degree of w in $L(G)$ equals the degree of x in G. A point or line is called odd or even depending on whether it has odd or even degree.

If G is a connected graph having at least one line, then $L(G)$ is also a connected graph. For the most part then, we restrict ourselves to connected graphs for otherwise each connected component can be treated individually.

By $L^2(G)$ we shall mean $L(L(G))$ and, in general, $L^n(G)=L(L^{n-1}(G))$ for $n \geq 1$, where $L^1(G)$ and $L^0(G)$ stand for $L(G)$ and G, respectively.

Two classes of graphs which have easily determined line-graphs are the cycles and simple paths. In particular, the line-graph of a cycle is a cycle of the same length, and the line-graph of a simple path of length n, $n \geq 1$, is a simple path of length $n-1$. It therefore follows that if G is a path of length n, $n \geq 1$, then $L^n(G)$ is the trivial path consisting of a single point while $L^n(G)$ does not exist for $m>n$. It is not difficult to see that if G is a connected graph which is not a path, then $L^n(G)$ exists for all positive integers n. Hence, if for some graph G, we wish to consider the infinite sequence $\{L^n(G)\}$ of graphs, then G must not be a path.

A bridge of a connected graph G is a line whose removal disconnects G, while a cutpoint of G is a point w of G such that the removal of w and all its incident lines

Received by the editors July 25, 1967.

(1) Definitions not presented in this article may be found in [3]. Work supported in part by a grant from the National Science Foundation (GN-2544).

559
results in a disconnected graph. In relation to this, we state the following three results.

Proposition 1. A necessary and sufficient condition that a point \(w \) of the line-graph \(L(G) \) of a connected graph \(G \) be a cutpoint is that it corresponds to a bridge \(x=uv \) of \(G \) in which neither of the points \(u \) and \(v \) has degree one.

Proposition 2. A necessary and sufficient condition that a line \(x=u_1u_2 \) be a bridge of the line-graph \(L(G) \) of a connected graph \(G \) is that the lines \(y_1 \) and \(y_2 \) in \(G \) which correspond to \(u_1 \) and \(u_2 \) be bridges which meet in a point of degree two.

Proposition 3. A necessary and sufficient condition that the iterated line-graph \(L^n(G) \) of a connected graph \(G \) contain a bridge \(x \) is that \(G \) contain a path of \(n+1 \) bridges, each consecutive two of which have a point of degree two in common.

Eulerian line-graphs. A graph \(G \) is called **eulerian** if it has a closed path which contains every line of \(G \) exactly once and contains every point of \(G \). Such a path is referred to as an **eulerian path.**

Eulerian graphs have been characterized by Euler [2] as those graphs which are connected and in which every point is even. It follows trivially that if \(G \) is an eulerian graph, then \(L(G) \) too is eulerian; furthermore, if \(G \) is eulerian, then the sequence \(\{L^n(G)\} \) contains only eulerian graphs. We now state necessary and sufficient conditions for a graph \(G \) in order that there exists a nonnegative integer \(n \) such that \(L^n(G) \) is eulerian. Again the proof is routine and is omitted.

Proposition 4. Let \(G \) be a connected graph which is not a simple path. Then exactly one of the following must occur:

1. \(G \) is eulerian,
2. \(L(G) \) is eulerian but \(G \) is not,
3. \(L^2(G) \) is eulerian but \(L(G) \) is not,
4. there exists no \(n \geq 0 \) such that \(L^n(G) \) is eulerian,

where

1. occurs if and only if every point of \(G \) is even,
2. occurs if and only if every point of \(G \) is odd,
3. occurs if and only if every line of \(G \) is odd, and
4. occurs otherwise.

Corollary 4a. Let \(G \) be a connected graph which is other than a simple path. If the sequence \(\{L^n(G)\} \) of iterated line-graphs of \(G \) contains an eulerian graph, then the degrees of the lines of \(G \) are of the same parity and \(L^n(G) \) is eulerian for \(n \geq 2 \).

Hamiltonian line-graphs. A graph \(G \) is called **hamiltonian** if \(G \) has a cycle containing all the points of \(G \); such a cycle is also called **hamiltonian.** If \(C \) is a hamiltonian cycle of hamiltonian graph \(G \), then any line of \(G \) which does not lie on \(C \) is referred to as a **diagonal** of \(C \). Clearly, every hamiltonian graph is connected and has at least three points.
The following concept will be of considerable use to us. A graph G with q lines, where $q \geq 3$, is called sequential if the lines of G can be ordered as $x_0, x_1, \ldots, x_{q-1}, x_q = x_0$ so that x_i and x_{i+1}, $i = 0, 1, \ldots, q-1$, are adjacent. Two types of graphs in which we are interested are sequential, as we now see.

Proposition 5. Every eulerian graph is sequential.

Proof. If G is an eulerian graph, then G contains a closed path P containing each line of G exactly once, say $P: x_0, x_1, \ldots, x_{q-1}, x_q = x_0$, where x_i and x_{i+1} are adjacent for $i = 0, 1, \ldots, q-1$. This ordering of the lines of G serves to show that G is sequential.

Proposition 6. Every hamiltonian graph is sequential.

Proof. Let C be a hamiltonian cycle of a hamiltonian graph G whose points are arranged cyclically as, say, $v_0, v_1, \ldots, v_{p-1}, v_p = v_0$. To show that G is sequential, we exhibit an appropriate ordering of the lines of G. We begin the sequence of lines by selecting all those diagonals incident with v_0 (there may be none). These lines may be taken in any order, and, clearly, each two are adjacent with each other. We follow these with the line v_0v_1. The next lines in the sequence are those diagonals incident with v_1 (again, there may be none). As before, these lines may be taken in any order. The next line in the sequence is v_1v_2, followed by all those diagonals incident with v_2 which are not in the part of the sequence already formed. We continue this until we finally arrive at the line $v_{p-1}v_p = v_0v_1$, which is adjacent with the first line in the sequence. From the way the sequence was produced, it is now clear that every line of G appears exactly once and that any two consecutive lines in the sequence are adjacent as are the first and last lines. Thus G is sequential.

The primary purpose for introducing sequential graphs lies in the following theorem.

Theorem 1. A necessary and sufficient condition that the line-graph $L(G)$ of a graph G be hamiltonian is that G is sequential.

Proof. The result follows by simply observing that the points of $L(G)$ can be ordered $v_0, v_1, \ldots, v_{p-1}, v_p = v_0$, where v_i and v_{i+1} are adjacent for $i = 0, 1, \ldots, p-1$, if and only if $L(G)$ is hamiltonian, and such an ordering is possible if and only if the lines of G can be ordered $x_0, x_1, \ldots, x_{p-1}, x_p = x_0$, where x_i and x_{i+1} are adjacent for $i = 0, 1, \ldots, p-1$. This latter condition states that G is sequential.

Propositions 5 and 6 and Theorem 1 yield the following corollaries.

Corollary 1A. If G is an eulerian graph, then $L(G)$ is both eulerian and hamiltonian. Furthermore, $L^n(G)$ is both eulerian and hamiltonian for all $n \geq 1$.

Corollary 1B. If G is a hamiltonian graph; then $L(G)$ is hamiltonian. Furthermore, $L^n(G)$ is hamiltonian for all $n \geq 1$.
As with eulerian graphs, we now determine for what connected graphs G which are not simple paths does the sequence $\{L^n(G)\}$ contain a hamiltonian graph. Unlike the situation for eulerian graphs, however, we find that for all connected graphs G which are not simple paths, the sequence $\{L^n(G)\}$ contains a (in fact, infinitely many) hamiltonian graph. A proof of this was outlined in [1]. Before proving it in detail, we present two lemmas.

Lemma 1. If a graph G has a cycle C with the property that every line of G is incident with at least one point of C, then $L(G)$ is hamiltonian.

Proof. The graph G stated in the lemma is sequential so that, by Theorem 1, $L(G)$ is hamiltonian. To see that G is sequential, one need only observe that an appropriate ordering of the lines of G can be accomplished by using the same procedure as that in Proposition 6 except that after considering all the diagonals at a given point, we next insert in the sequence all the lines of G which are incident with that point but with no other point of C. After this, we proceed as before. The graph G is therefore easily seen to be sequential.

Lemma 2. Let G be a graph consisting of a cycle C, its diagonals, and m paths P_1, P_2, \ldots, P_m where (i) each path has precisely one endpoint in common with C and (ii) for $i \neq j$, P_i and P_j are disjoint except possibly having an endpoint in common if this point is also common to C. Then, if the maximum of the lengths of the P_i is M, $L^n(G)$ is hamiltonian for all $n \geq M$.

Proof. The line-graph $L(G)$ has the same properties as G except that the length of each of the m paths is one less than in G so that the maximum length of the paths is $M - 1$. Thus, we can apply Lemma 1 to $L^{M-1}(G)$ thereby showing that $L^n(G)$ is hamiltonian for all $n \geq M$.

Theorem 2. Let G be a connected graph which is not a simple path. If G has p points, then $L^n(G)$ is hamiltonian for all $n \geq p - 3$.

Proof. The proof is by induction on p. Later developments in the proof make it convenient to investigate individually all the graphs under consideration for which $p = 3, 4,$ or 5. The only connected graph with three points which is not a path is a triangle, but this graph is already hamiltonian so that the result follows.

For $p = 4$, there are two connected graphs which are not simple paths and which are not already hamiltonian. We denote these graphs by $G_{4,1}$ and $G_{4,2}$; they are shown in Figure 1. One readily sees that the line-graph of each of these two graphs is hamiltonian, and the result is established for $p = 4$.

There are twelve connected graphs with five points which are not paths and which do not contain hamiltonian cycles. These are also shown in Figure 1. It is a routine matter to verify that $L^2(G_{5,1})$ and $L^2(G_{5,2})$ are hamiltonian and that $L(G_{5,i})$ is hamiltonian for $i = 3, 4, \ldots, 12$. This proves the theorem for $p = 5$.

Let us assume then for all connected graphs G' which are not simple paths and which have s points, where $s < p$ and $p \geq 5$, that $L^n(G')$ is hamiltonian for all
$n \geq s - 3$. Let G be a connected graph with p points which is not a simple path. We show that $L^{p-3}(G)$ is hamiltonian which, with the aid of Corollary 1B, establishes the result.

The theorem is clearly evident if G itself is a cycle, so, without loss of generality, we assume G is not a cycle implying the existence of a point v having degree three or more. By H we shall mean the connected star subgraph whose lines are all those incident with v, and we let Q denote the subgraph whose point set consists of all the points of G different from v and whose lines are all those in G which are not in H.

The subgraphs H and Q have $\deg v$ points in common but are line-disjoint. We
adopt the notation \(G = H \oplus Q \) to mean that the line set of \(G \) is partitioned by \(H \) and \(Q \). Also, we denote the connected components of \(Q \) by \(G_1, G_2, \ldots, G_k \), where \(G_i \) has \(p_i \) points for \(i = 1, 2, \ldots, k \). Clearly, \(\sum p_i = p - 1 \).

If \(G_i \) is a path, then \(L^{p_i}(G_i) \) does not exist whereas if \(G_i \) is not a path, then \(L^{p_i}(G_i) \) is hamiltonian for \(n \geq p_i - 3 \), by the inductive hypothesis.

The line-graph \(H_1 = L(H) \) is a complete subgraph of \(L(G) \), which, therefore, has a cycle containing all the points of \(H_1 \). Let \(J_1 \) denote the connected subgraph of \(L(G) \) consisting of \(H_1 \) and all those lines incident with a point of \(H_1 \). Thus, \(L(G) \) can be expressed as \(J_1 \oplus L(G_1) \oplus L(G_2) \oplus \cdots \oplus L(G_k) \), where \(L(G_1) \) and \(L(G_2) \) are disjoint for \(i \neq j \).

Now let \(H_2 = L(J_1) \) and let \(J_2 \) denote the connected subgraph of \(L^2(G) \) consisting of \(H_2 \) and all lines incident with a point of \(H_2 \). By Lemma 1, \(H_2 \) has a cycle containing all the points of \(H_2 \). Thus, \(L^2(G) = J_2 \oplus L^2(G_1) \oplus L^2(G_2) \oplus \cdots \oplus L^2(G_k) \).

In general, we let \(J_m \) denote the connected subgraph of \(L^m(G) \) consisting of \(H_m \) and all those lines incident with a point of \(H_m \) and let \(H_{m+1} = L(J_m) \), where \(H_{m+1} \) has a cycle containing all the points of \(H_{m+1} \) by Lemma 1. The graph \(L^m(G) \) can therefore be expressed as \(J_m \oplus L^m(G_1) \oplus L^m(G_2) \oplus \cdots \oplus L^m(G_k) \).

We now consider two cases.

Case 1. Suppose each of the components \(G_1, G_2, \ldots, G_k \) of \(Q \) is a path. (This includes the possibility that some of these components may be the trivial path consisting of a single point.)

If \(k \geq 3 \), then \(p_i \leq p - 3 \) for all \(i \). Hence, \(L^{p-3}(G) = H_{p-3} \), which contains a hamiltonian cycle. If \(k = 2 \) and neither \(p_1 \) nor \(p_2 \) exceeds \(p - 3 \), then, as before, \(L^{p-3}(G) = H_{p-3} \). If, on the other hand, \(k = 2 \) and one component, say \(G_1 \), has \(p - 2 \) points while \(G_2 \) is a single point, then \(H \) and \(G_1 \) have at least two points in common. Thus \(G \) contains a cycle plus possibly diagonals and \(j \) pairwise disjoint paths, \(1 \leq j \leq 3 \), each path having precisely one endpoint in common with the cycle. Since none of these paths has length exceeding \(p - 4 \), it follows, by Lemma 2, that \(L^{p-4}(G) \) (and so also \(L^{p-3}(G) \)) contains a hamiltonian cycle.

If \(k = 1 \), then \(Q \) is a path having at least three points in common with \(H \) so that \(G \) consists of a cycle (with some diagonals) and \(j \) pairwise disjoint paths, \(0 \leq j \leq 2 \), each path having exactly one endpoint in common with the cycle. If \(j = 0 \), \(G \) is hamiltonian while if \(j > 0 \), no path extending from the aforementioned cycle can have length exceeding \(p - 4 \), and by Lemma 2, \(L^{p-4}(G) \) is hamiltonian as is \(L^{p-3}(G) \).

Case 2. Assume the first \(t \) subgraphs, \(1 \leq t \leq k \), of \(G_1, G_2, \ldots, G_k \) are not paths. Clearly, then, each of \(G_1, G_2, \ldots, G_t \) has at least three points.

If \(t < k \), then \(G_{t+1}, G_{t+2}, \ldots, G_k \) are paths, each having at most \(p - 4 \) points so that \(L^{p-4}(G) = J_{p-4} \oplus L^{p-4}(G_1) \oplus L^{p-4}(G_2) \oplus \cdots \oplus L^{p-4}(G_k) \). Since each \(G_i \), \(1 \leq i \leq t \), has at most \(p - 1 \) points, each subgraph \(L^{p-4}(G_i) \) of \(L^{p-4}(G) \) has a cycle containing all points of \(L^{p-4}(G_i) \) by the inductive hypothesis.

For each \(i = 1, 2, \ldots, t \), there is clearly at least one line joining a point of \(H_{p-5} \)
to a point of $L^{p-5}(G_t)$. We now show that for each i such a line exists with the added property that it is adjacent with at least two lines of $L^{p-5}(G_t)$.

Suppose $t=1$ so that G_1 is the only component of Q which is not a path. If $k>1$, then G_1 has at most $p-2$ points so that $L^{p-5}(G_1)$ contains a hamiltonian cycle and clearly such a line exists. If $k=1$, then $Q=G_1$ and all lines of H are incident with points of G_1. Since each line which joins H_m to $L^m(G_1)$ results in one or more lines joining H_{m+1} with $L^{m+1}(G_1)$, there are at least three lines joining H_{p-5} and $L^{p-5}(G_1)$. If no such line is adjacent with at least two lines of $L^{p-5}(G_1)$, then each of the three or more lines joining H_{p-5} and $L^{p-5}(G_1)$ is adjacent with precisely one line of $L^{p-5}(G_1)$. Hence, $L^{p-5}(G_1)$ contains at least three lines which are incident with points of degree one, i.e., $L^{p-5}(G_1)$ contains at least three bridges. By Proposition 3, G_1 must contain a path of $p-4$ bridges for each bridge of $L^{p-5}(G_1)$. Since the bridges of $L^{p-5}(G_1)$ are incident with points of degree one and since $L^{p-5}(G_1)$ is not itself a path, the three or more paths of G_1 are line-disjoint. This implies that G_1 contains at least $3(p-4)+1$ points but since $p \geq 6$, $3(p-4)+1 > p-1$, which contradicts the number of points in G_1.

Suppose next that $t>1$, i.e., suppose Q contains two or more components which are not paths. Therefore, G_1 and G_2 are not paths, and each contains at most $p-4$ points. If there is a line joining a point of H_{p-5} to a point of $L^{p-5}(G_1)$, say, which is adjacent with only one line of $L^{p-5}(G_1)$, then $L^{p-5}(G_1)$ contains a bridge implying that G_1 contains a path of $p-4$ bridges, but this contradicts the number of points of G_1.

We therefore conclude that for each $i=1,2,\ldots,t$, there exists a line joining H_{p-5} and $L^{p-5}(G_t)$ which is adjacent to two lines of $L^{p-5}(G_t)$. This implies that for each $i=1,2,\ldots,t$, there is a point u_i in H_{p-4} adjacent to both endpoints of a line in $L^{p-4}(G_1)$. It is not difficult to see that $u_i \neq u_j$ for $i \neq j$. Let x_{i1} and x_{i2} be lines of $L^{p-4}(G)$ which join u_i to the distinct endpoints of a line y_i of $L^{p-4}(G_i)$.

We now claim that $L^{p-4}(G)$ is a sequential graph so that $L^{p-5}(G)$ is hamiltonian. Recall first that $L^{p-4}(G_i)$ for $1 \leq i \leq t$ has a cycle containing all the points of $L^{p-4}(G_i)$ and so is sequential by Proposition 6. Thus for $1 \leq i \leq t$, the lines of $L^{p-4}(G_i)$ can be arranged in a sequence s_i such that each pair of successive lines in s_i are adjacent and the first and last lines in s_i are adjacent. Let z_i be the term following y_i in s_i (or the first term of s_i if y_i is the last term). Now y_i is adjacent to both x_{i1} and x_{i2}, and z_i, being adjacent to y_i, is adjacent to one of x_{i1} and x_{i2}. Therefore, by cyclically permuting the terms of s_i if necessary and reversing their order if necessary, we can convert s_i into a sequence s'_i whose first and last terms are adjacent to x_{i1} and x_{i2}, respectively. Now H_{p-4} has a cycle C containing all the points of H_{p-4} and every line of J_{p-4} is incident with at least one point of C. Therefore, the procedure of the proof of Lemma 1 enables us to order the lines of J_{p-4} in a sequence $(s, \text{ say})$ such that each pair of successive lines in s are adjacent as are the first and last lines. Moreover, since x_{i1} and x_{i2} are lines incident with the point u_i of C and with no other point of C, it is evident that, in applying the procedure of the proof
of Lemma 1, we can arrange the lines incident with \(u_i \) so that \(x_{i2} \) will immediately follow \(x_{i1} \) in \(s \) for \(i = 1, 2, \ldots, t \). If we now insert the sequence \(s_i' \) between the terms \(x_{i1} \) and \(x_{i2} \) of \(s \) for \(i = 1, 2, \ldots, t \), the resulting sequence has the properties required for \(L^{n-4}(G) \) to be a sequential graph. This completes the proof.

The preceding theorem now permits us to make the following definition. Let \(G \) be a connected graph which is not a simple path. The \textit{hamiltonian index} of \(G \), denoted \(h(G) \), is the smallest nonnegative integer \(n \) such that \(L^n(G) \) is hamiltonian. According to Theorem 2 then, if \(G \) is a connected graph with \(p \) points which is not a simple path, then \(h(G) \) exists and \(h(G) \leq p - 3 \). This bound cannot, in general, be improved since for each \(p \geq 3 \) the graph whose point set is \(\{v_i \mid 1 \leq i \leq p\} \) and whose line set is \(\{v_2v_3\} \cup \{v_{i-1}v_{i+1} \mid 1 \leq i \leq p - 1\} \) has a hamiltonian index of \(p - 3 \).

\textbf{References}

\textbf{Western Michigan University,}
\textbf{Kalamazoo, Michigan}