Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On the potential operator for one-dimensional recurrent random walks.

Author: Charles J. Stone
Journal: Trans. Amer. Math. Soc. 136 (1969), 413-426
MSC: Primary 60.66
MathSciNet review: 0238398
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] D. S. Ornstein, Random walks. I, Trans. Amer. Math. Soc. (to appear).
  • [2] -, ``Random walks on the line,'' in Markov processes and potential theory, edited by J. Chover, Wiley, New York, 1967.
  • [3] S. C. Port and C. J. Stone, Hitting times and hitting places for non-lattice recurrent random walks, J. Math. Mech. 17 (1967), 35-58. MR 0215375 (35:6216)
  • [4] F. L. Spitzer, A Tauberian theorem and its probability interpretation, Trans. Amer. Math. Soc. 60 (1960), 150-169. MR 0111066 (22:1930)
  • [5] -, Principles of random walk, Van Nostrand, Princeton, N. J., 1964. MR 0171290 (30:1521)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60.66

Retrieve articles in all journals with MSC: 60.66

Additional Information

Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society