On the potential operator for one-dimensional recurrent random walks.

Author:
Charles J. Stone

Journal:
Trans. Amer. Math. Soc. **136** (1969), 413-426

MSC:
Primary 60.66

MathSciNet review:
0238398

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**D. S. Ornstein,*Random walks*. I, Trans. Amer. Math. Soc. (to appear).**[2]**-, ``Random walks on the line,'' in*Markov processes and potential theory*, edited by J. Chover, Wiley, New York, 1967.**[3]**Sidney C. Port and Charles J. Stone,*Hitting time and hitting places for non-lattice recurrent random walks*, J. Math. Mech.**17**(1967), 35–57. MR**0215375****[4]**Frank Spitzer,*A Tauberian theorem and its probability interpretation*, Trans. Amer. Math. Soc.**94**(1960), 150–169. MR**0111066**, 10.1090/S0002-9947-1960-0111066-X**[5]**Frank Spitzer,*Principles of random walk*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1964. MR**0171290**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
60.66

Retrieve articles in all journals with MSC: 60.66

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1969-0238398-7

Article copyright:
© Copyright 1969
American Mathematical Society