Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On symmetric neighborhood systems in metric, strongly paracompact and some other types of spaces


Author: Margaret Reames Wiscamb
Journal: Trans. Amer. Math. Soc. 137 (1969), 431-450
MSC: Primary 54.65
DOI: https://doi.org/10.1090/S0002-9947-1969-0236893-8
MathSciNet review: 0236893
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105-125. MR 0131860 (24:A1707)
  • [2] S. Hanai and K. Morita, Closed mappings and metric spaces, Proc. Japan Acad. 32 (1956), 10-14. MR 0087077 (19:299a)
  • [3] M. Katětov, On the dimension of non-separable spaces. I, Czechoslovak Math. J. 2 (1952), 333-368. MR 0061372 (15:815e)
  • [4] E. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc. 4 (1953), 831-838. MR 0056905 (15:144b)
  • [5] -, Another note on paracompact spaces, Proc. Amer. Math. Soc. 8 (1957), 822-828. MR 0087079 (19:299c)
  • [6] -, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375-376. MR 0152985 (27:2956)
  • [7] K. Morita, Star-finite coverings and the star-finite property, Math. Japon. 1 (1948), 60-68. MR 0026803 (10:204d)
  • [8] -, Normal families and dimension theory for metric spaces, Math. Ann. 128 (1954), 350-362. MR 0065906 (16:501h)
  • [9] J. Nagata, A contribution to the theory of metrization, J. Inst. Polytech. Osaka City Univ. Ser. A 8 (1957), 185-192. MR 0097789 (20:4256)
  • [10] -, A note on dimension theory for metric spaces, Fund. Math. 45 (1958), 143-181. MR 0105081 (21:3827)
  • [11] -, On a necessary and sufficient condition of metrizability, J. Inst. Polytech. Osaka City Univ. Ser. A. Math. 1 (1950), 93-100. MR 0043448 (13:264e)
  • [12] V. Ponomarev, Proof of the invariance of the star finite property under open perfect mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 425-428. MR 0142107 (25:5500)
  • [13] P. Roy, Failure of equivalence of dimension concepts for metric spaces, Bull. Amer. Math. Soc. 68 (1962), 609-613. MR 0142102 (25:5495)
  • [14] Yu. Smirnov, On strongly paracompact spaces, Izv. Akad. Nauk. SSSR. Ser. Mat. 20 (1956), 253-274. MR 0084761 (18:917b)
  • [15] A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977-982. MR 0026802 (10:204c)
  • [16] -, Metrizability of decomposition spaces, Proc. Amer. Math. Soc. 7 (1956), 690-700. MR 0087078 (19:299b)
  • [17] -, Universal spaces for some metric uniformities, Quart. J. Math. Oxford Ser. (2) 11 (1960), 105-115. MR 0116308 (22:7103)
  • [18] G. T. Whyburn, Open and closed mappings, Duke Math. J. 17 (1950), 69-74. MR 0031713 (11:194e)
  • [19] A. Zarelua, On a theorem of Hurewicz, Dokl. Akad. Nauk. SSSR 141 (1961), 777-780= Soviet Math. Dokl. 2 (1961), 1534-1537. MR 0131875 (24:A1722)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.65

Retrieve articles in all journals with MSC: 54.65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1969-0236893-8
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society