Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Local times and sample function properties of stationary Gaussian processes


Author: Simeon M. Berman
Journal: Trans. Amer. Math. Soc. 137 (1969), 277-299
MSC: Primary 60.50
DOI: https://doi.org/10.1090/S0002-9947-1969-0239652-5
MathSciNet review: 0239652
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Ju. K. Beljaev, Continuity and Hölder's conditions for sample functions of stationary Gaussian processes, Proc. Fourth Berkeley Sympos. Math. Stat. and Prob., Vol. 2: Contributions to probability theory, Univ. of California Press, Berkeley, Calif., 1961, pp. 23-33. MR 0143256 (26:815)
  • [2] E. S. Boylan, Local times for a class of Markoff processes, Illinois J. Math. 8 (1964), 19-39. MR 0158434 (28:1657)
  • [3] C. Carathéodory, Theory of functions, Vol. 2, 2nd English ed., Chelsea, New York, 1960.
  • [4] H. Cramér, Mathematical methods of statistics, Princeton Univ. Press, Princeton, N. J., 1946. MR 0016588 (8:39f)
  • [5] -, On the maximum of a normal stationary stochastic process, Bull. Amer. Math. Soc. 68 (1962), 512-516. MR 0140140 (25:3562)
  • [6] H. Cramér and M. R. Leadbetter, Stationary and related stochastic processes: Sample function properties and their applications, Wiley, New York, 1967. MR 0217860 (36:949)
  • [7] J. L. Doob, Stochastic processes, Wiley, New York, 1953. MR 0058896 (15:445b)
  • [8] K. Itô and H. P. McKean, Jr., Diffusion processes and their sample paths, Springer-Verlag, Berlin, 1965.
  • [9] P. Lévy, Sur certains processus stochastiques homogènes, Compositio Math. 7 (1939), 283-339. MR 0000919 (1:150a)
  • [10] E. Lukacs, Characteristic functions, Griffin's Statistical Monographs & Courses, No. 5, Hafner, New York, 1960. MR 0124075 (23:A1392)
  • [11] H. Trotter, A property of Brownian motion paths, Illinois J. Math. 2 (1958), 425-433. MR 0096311 (20:2795)
  • [12] J. Yeh, Differentiability of sample functions in Gaussian processes, Proc. Amer. Math. Soc. 18 (1967), 105-108. MR 0203823 (34:3670)
  • [13] N. D. Ylvisaker, The expected number of zeros of a stationary Gaussian process, Ann. Math. Statist. 36 (1965), 1043-1046. MR 0177458 (31:1721)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60.50

Retrieve articles in all journals with MSC: 60.50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1969-0239652-5
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society