Extensions of D. Jackson's theorem on best complex polynomial mean approximations
Authors:
J. L. Walsh and E. B. Saff
Journal:
Trans. Amer. Math. Soc. 138 (1969), 6169
MSC:
Primary 30.70
MathSciNet review:
0241662
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [1]
Dunham
Jackson, On certain problems of approximation
in the complex domain, Bull. Amer. Math.
Soc. 36 (1930), no. 12, 851–857. MR
1562068, http://dx.doi.org/10.1090/S000299041930050788
 [2]
W.
E. Sewell, Degree of Approximation by Polynomials in the Complex
Domain, Annals of Mathematical Studies, no. 9, Princeton University
Press, Princeton, N. J., 1942. MR 0007054
(4,78c)
 [3]
J.
L. Walsh, Approximation by polynomials: Uniform convergence as
implied by mean convergence. III, Proc. Nat. Acad. Sci. U.S.A.
56 (1966), 1406–1408. MR 0213584
(35 #4444)
 [4]
J.
L. Walsh, Approximation by polynomials: Uniform convergence as
implied by mean convergence, Proc. Nat. Acad. Sci. U.S.A.
55 (1966), 20–25. MR 0188453
(32 #5891)
 [5]
, Interpolation and approximation, Amer. Math. Soc. Colloq. Publ., Vol. 20, Amer. Math. Soc., Providence, R. I., 1935.
 [6]
J.
L. Walsh, Approximation by bounded analytic functions,
Mémor. Sci. Math., Fasc. 144, GauthierVillars, Paris, 1960. MR 0119001
(22 #9770)
 [7]
J.
L. Walsh, The convergence of sequences of rational functions of
best approximation with some free poles, Approximation of Functions
(Proc. Sympos. General Motors Res. Lab., 1964 ), Elsevier Publ. Co.,
Amsterdam, 1965, pp. 1–16. MR 0186986
(32 #4441)
 [1]
 D. Jackson, On certain problems of approximation in the complex domain, Bull. Amer. Math. Soc. 36 (1930), 851. MR 1562068
 [2]
 W. E. Sewell, Degree of approximation by polynomials in the complex domain, Ann. of Math. Studies, No. 9, Princeton Univ. Press, Princeton, N. J., 1942. MR 0007054 (4:78c)
 [3]
 J. L. Walsh, Approximation by polynomials: uniform convergence as implied by mean convergence. III, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 1406. MR 0213584 (35:4444)
 [4]
 , Approximation by polynomials: uniform convergence as implied by mean convergence, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 2025. MR 0188453 (32:5891)
 [5]
 , Interpolation and approximation, Amer. Math. Soc. Colloq. Publ., Vol. 20, Amer. Math. Soc., Providence, R. I., 1935.
 [6]
 , Approximation by bounded analytic functions, Mémor. Sci. Math., Fasc. 144, GauthierVillars, Paris, 1960. MR 0119001 (22:9770)
 [7]
 , Thé convergence of sequences of rational functions of best approximation with some free poles, Proc. Sympos. Approximation of Functions, General Motors Corp. (Detroit, 1964), edited by H. L. Garabedian, Elsevier, Amsterdam, 1965, pp. 116. MR 0186986 (32:4441)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
30.70
Retrieve articles in all journals
with MSC:
30.70
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947196902416629
PII:
S 00029947(1969)02416629
Article copyright:
© Copyright 1969 American Mathematical Society
