ON COMMON FIXED POINTS OF COMMUTING CONTINUOUS FUNCTIONS ON AN INTERVAL

BY

JOHN PHILIP HUNEKE

This paper offers two methods of constructing commuting pairs of continuous functions (i.e. \(f, g \) such that \(f(g(x))=g(f(x)) \)) which map \([0, 1]\) to itself without common fixed points. Any such pair will be called "a solution to the commuting function problem".

PART I

Lemma 1. Let \((f_n \mid n \in \mathbb{N}), (g_n \mid n \in \mathbb{N})\) be two uniformly convergent sequences of continuous functions from \([0, 1]\) to itself with limits \(f, g \) respectively. If \(f_n g_{n+1} = g_n f_{n+1} \) for each \(n \in \mathbb{N} \), then \(f, g \) commute.

Lemma 2. Let \(h \) be a piecewise linear nowhere constant function (i.e. the derivative of \(h \), denoted \(Dh \), is nowhere zero) defined on \(I \); and let \(A = h(I) \) be a finite set which contains the image under \(h \) of all points in the interior of \(I \) at which \(Dh \) does not exist. If \(r, s \) are consecutive (with respect to the natural order on \(R \)) in \(h^{-1}(A) \), then \(h(r), h(s) \) are consecutive in \(A \).

Proposition 1. Let \((f_n \mid n \in \mathbb{N}), (g_n \mid n \in \mathbb{N})\) be sequences of piecewise linear functions from \([0, 1]\) to itself such that either \(|x-f_2(x)| > 1/6 \) or \(|x-g_2(x)| > 1/6 \) for each \(x \in [0, 1] \). Then the limits of the sequences \((f_n \mid n \in \mathbb{N}), (g_n \mid n \in \mathbb{N})\) form a solution to the commuting function problem provided that there exists a sequence \((A_n \mid n \in \mathbb{N})\) of finite subsets of \([0, 1]\), and for each \(n \in \mathbb{N} \), the following properties are valid:

\[P_1(n): f_n g_{n+1} = g_n f_{n+1}; \]
\[P_2(n): |Df_n(x)| \geq 3 \text{ and } |Dg_n(y)| \geq 3 \text{ wherever the derivatives exist}; \]
\[P_3(n): \text{if either } Df_n(x) \text{ or } Dg_n(x) \text{ does not exist, then } x \in A_n; \]
\[P_4(n): \text{for each pair of consecutive points } r, s \text{ of } A_{n+1} \text{ with } r < s, \]

\[f_n([r, s]) = f_{n+1}([r, s]) \text{ and } g_n([r, s]) = g_{n+1}([r, s]); \]

\[P_5(n): f_n^{-1}(A_n) = A_{n+1} = g_n^{-1}(A_n); \text{ and} \]
\[P_6(n): 0, 1 \in A_n. \]

Received by the editors July 28, 1967 and, in revised form, June 14, 1968.

371
Proof. For any $m \in \mathbb{N}^*$ and for any pair of consecutive points r, s of A_{m+1}, there exists by $P_6(n)$ and by Lemma 2 a pair of consecutive points r', s' of A_m (equal to $g_m(r), g_m(s)$ respectively) such that \(\frac{1}{2} |f_{m-1}(r') - f_{m-1}(s')| \geq |f_m(r) - f_m(s)| \) since:

\[
\frac{1}{2} \cdot |f_{m-1}(r') - f_{m-1}(s')| = \frac{1}{2} \cdot |g_{m-1}(f_m(r)) - g_{m-1}(f_m(s))| \\
= \frac{1}{2} \cdot |f_m(r) - f_m(s)| \text{ [by } P_4(m-1)] \\
= \frac{1}{2} \cdot |f_m(r) - f_m(s)| \cdot \frac{|g_{m-1}(f_m(r)) - g_{m-1}(f_m(s))|}{|f_m(r) - f_m(s)|} \\
\geq \frac{1}{2} |f_m(r) - f_m(s)| \text{ [by } P_3(m), \text{ Lemma 2, } P_3(m-1), \text{ and } P_2(m-1)] \\
= |f_m(r) - f_m(s)|.
\]

For every $n \in \mathbb{N}$ and for every $x \in [0, 1]$, there exist two consecutive points r, s of A_{n+1} such that $r \leq x \leq s$ (since A_{n+1} is finite and contains 0, 1 by $P_6(n+1)$), and so it follows that \(|f_n(x) - f_{n+1}(x)| \leq |f_n(r) - f_n(s)| \leq (1/3)^n \) by $P_6(n)$, $P_6(n+1)$, and by iterated use of the result established in the preceding sentence. Therefore \(\|f_n - f_{n+1}\| \leq 3^{-n} \). Since \((f_n \mid n \in \mathbb{N}), (g_n \mid n \in \mathbb{N}) \) have symmetric roles, we also have for each $n \in \mathbb{N}$ \(g_n - g_{n+1} \leq 3^{-n} \).

Now, \((f_n \mid n \in \mathbb{N}), (g_n \mid n \in \mathbb{N}) \) are uniformly convergent sequences, since for every pair $n, m \in \mathbb{N}$ with $n \leq m$, we have:

\[
\|f_n - f_m\| \leq \sum_{i=n}^{\infty} \|f_i - f_{i+1}\| \leq \sum_{i=n}^{\infty} 3^{-i} = (2 \cdot 3^{n-1})^{-1};
\]

and similarly \(\|g_n - g_m\| \leq (2 \cdot 3^{n-1})^{-1} \). From these inequalities, the limits of the two sequences of functions have no common fixed point since \(\|f_2 - \lim_{n \to \infty} f_n\| \leq 1/6 \) and \(\|g_2 - \lim_{n \to \infty} g_n\| \leq 1/6 \). Also, the limits commute by Lemma 1.

Notation. If f is a piecewise linear function defined on I, then let $B(f)$ denote the set of all points in the interior of I at which f has no derivative (i.e. at which Df does not exist).

Lemma 3. Let f be a piecewise linear function defined on I; let g be a function defined on I; let h be a linear function with range I; and let l be a nonconstant linear function defined on $f(I)$. Then $gh(B(fh)) = g(B(f))$, $B(1f) = B(f)$, and $h^{-1}(B(f)) = B(f(h))$.

Definition. For any piecewise linear function f, if there exists an $s \in \mathbb{R}^+$ such that $|Df(x)| = s$ for each x for which $Df(x)$ exists, then f has a derivative of constant absolute value which we will denote by f has DCAV; also, we will denote s by $\text{slope } f$.

Notation. If I is an interval with endpoints r, s, then let $T_r: I \to I$ denote the linear function defined for each $x \in I$ by $T_r(x) = r + s - x$.

Proposition 2. Let $f: [a, a'] \to [b, b']$ and $g: [c, c'] \to [b, b']$ be piecewise linear functions. If $\{f(a), f(a')\} = \{b, b\} = \{g(c), g(c')\}$ and if f, g have DCAV, then there
exist piecewise linear functions \(j: [d, d'] \to [a, a'] \) and \(k: [d, d'] \to [c, c'] \) satisfying the properties: \(j(d) = a, j(d') = a' \); \(k(d), k(d') = \{c, c'\}; j, k \) have DCAV; \(j(B(k)) \in B(f), k(B(j)) \in B(g) \); and \(fj = gk \). The following diagram commutes:

\[
\begin{array}{ccc}
[d, d'] & \xrightarrow{j} & [a, a'] \\
\downarrow{k} & & \downarrow{f} \\
[c, c'] & \xrightarrow{g} & [b, b']
\end{array}
\]

Proof. First Proposition 2 will be proved under the additional assumption that \(f(a) = b = g(c) \) (and hence \(f(a') = b' = g(c') \)). We proceed by induction on the number of distinct points in \(B(f) \cup B(g) \). Pick an interval \([d, d']\).

If \(B(f) \cup B(g) \) is empty, then \(f \) and \(g \) are linear, so define \(j, k \) to be the unique linear maps on \([d, d']\) such that \(j(d) = a, j(d') = a', k(d) = c, \) and \(k(d') = c' \). Observe that \(fj \) and \(gk \) are linear functions on \([d, d']\) such that \(fj(d) = b = gk(d) \) and \(fj(d') = gk(d') \). Therefore \(fj = gk \); also \(B(j) \) and \(B(k) \) are empty. So \(j, k \) satisfy Proposition 2.

Now let \(n \in N \) and assume the induction hypothesis: Proposition 2 is valid whenever \(f(a) = b = g(c) \) and \(B(f) \cup B(g) \) has no more than \(n \) elements. Suppose we are given \(f, g \) satisfying the hypothesis of Proposition 2 such that \(f(a) = b = g(c) \) and \(B(f) \cup B(g) \) has \(n + 1 \) elements. Since \(B(f) \cup B(g) \) is finite and nonempty, let \(b'' \) denote the smallest element of \(f(B(f)) \cup g(B(g)) \). Since \(f \) and \(g \) play symmetric roles, assume without loss of generality that \(b'' \in f(B(f)) \). Let \(a'' \) denote any point in \(B(f) \) such that \(f(a'') = b'' \). \(B(f) \) equals the set of points which are local minimum or local maximum points for \(f \) except for \(a, a' \), because \(f \) has DVAC; also, \(a'' \) is a local minimum for \(f \) since \(f \) has a local maximum at the endpoint \(a' \) of \([a, a']\). Now \(f \) has local minima at \(a \) and \(a'' \), so \(f \) must have a local maximum between \(a \) and \(a'' \), i.e. \(B(f) \mid_{[a, a'']} \) is nonempty. Let \(b'' \) denote the maximum element of \(f(B(f) \mid_{[a, a'']}) \), and let \(a'' \) be any element of \(B(f) \mid_{[a, a'']} \) such that \(f(a'') = b'' \). Let \(c'' \) be the minimum element of \([c, c']\) such that \(g(c'') = b'' \), and let \(c'' \) be the maximum element of \([c, c'']\) such that \(g(c'') = b'' \). Let \(d'' = (2d + d')/3 \) and let \(d'' = (d + 2d')/3 \). Observe that the induction hypothesis is applicable to each of the three pairs of functions: (i) \(f \mid_{[a, a'']} \), \(g \mid_{[c, c'']} \); (ii) \(f \mid_{[a, a'']} \), \(g \mid_{[c, c'']} \); and (iii) \(f \mid_{[a, a'']} \), \(g \mid_{[c, c'']} \). Therefore, for (i) there exists \(j', k' \) defined on \([d, d'']\), for (ii) there exists \(j'', k'' \) defined on \([d', d'']\), and for (iii) there exists \(j'', k'' \) defined on \([d'', d'']\) satisfying Proposition 2 (as stated for \(f, g, j, k \) respectively). See Figure 1.

Now define the two points \(d^*, d^{**} \):

\[
d^* = d + (d' - d) \cdot \frac{\text{slope } j'}{\text{slope } j' + \text{slope } j''}.
\]

\[
d^{**} = d + (d' - d) \cdot \frac{\text{slope } j'' + \text{slope } j'''}{\text{slope } j' + \text{slope } j'' + \text{slope } j'''}.
\]
Let S' be the linear function defined from $[d, d^*]$ onto $[d, d']$ such that $S'(d) = d$, let S'' be the linear function defined from $[d^*, d^{**}]$ onto $[d'', d']$ such that $S''(d^*) = d''$, and let S' be the linear function defined from $[d^{**}, d']$ onto $[d'', d']$ such that $S''(d') = d'$. Let $j = j'S' \cup T_{a' \rightarrow a} S'' \cup j'''S''$ (considering a function to be a set of ordered pairs), and let $k = k'S' \cup k''S'' \cup k'''S''$. By checking the points d^*, d^{**}, it can be seen that j, k are well defined functions (i.e., $j(d^*) = a^*, j(d^{**}) = a^*$, $k(d^*) = c^*$, and $k(d^{**}) = c^*$). It is clear that j, k are piecewise linear functions. Also, j, k have DCAV with

slope $j = \frac{1}{2}$(slope $j' + \text{slope } j'' + \text{slope } j''')$ and slope $k = \frac{1}{2}$(slope $k' + \text{slope } k'' + \text{slope } k'''$).

Observe that $j(d) = a$, $j(d') = a'$, $k(d) = c$, and $k(d') = c'$. We also have:

$$j(B(k)) \subseteq \{ j(d^*) \cup j(B(k'S'))) \cup j(B(k''S'')) \cup j(B(k''S''')) \}
= \{ a^*, a^* \} \cup \{ j(B(k)) \cup T_{a' \rightarrow a} S''(B(k''S'')) \cup j'''S''(B(k''S'')) \}
= \{ a^*, a^* \} \cup \{ j(B(k)) \cup T_{a' \rightarrow a} S''(B(k''S'')) \}
[\text{by Lemma 3}]
\subseteq \{ a^*, a^* \} \cup B(f|_{a^* \rightarrow a^*}) \cup B(fT_{a^* \rightarrow a^*} - T_{a^* \rightarrow a^* - 1}) \cup B(f|_{a^* \rightarrow a^*})
= B(f).$$

Therefore, $j(B(k)) \subseteq B(f)$. Now, since j has DCAV, $x \in B(j)$ only if x is either a
local maximum or a local minimum of \(j \). Neither \(d^* \) nor \(d^{**} \) is a local maximum or a local minimum of \(j \), so neither is in \(B(j) \). So:

\[
k(B(j)) = k(B(j'S')) \cup k(B(T_a\alpha \cdot j''S'')) \cup k(B(j'S'''))
\]

\[
= k'(S(B(j'S'))) \cup k''S''(B(T_a\alpha \cdot j''S')) \cup k'''S''(B(j'S'''))
\]

\[
= k'(B(j')) \cup k''(B(j'')) \cup k'''(B(j''')) \quad \text{[by Lemma 3]}
\]

\[
\subseteq B(g|x_{c,-c_{-1}}|) \cup B(g|x_{c,-c_{-1}}|) \cup B(g|x_{c,-c_{-1}}|)
\]

Therefore, \(k(B(j)) \subseteq B(g) \). It is clear that \(f_j = gk \). Hence, \(j, k \) satisfy Proposition 2. By induction, Proposition 2 has been proved provided \(f(a) = b = g(c) \).

Now assume that \(f, g \) satisfy the hypothesis of Proposition 2.

Case 1. If \(f(a) = b = g(c) \), then \(j, k \) exist satisfying Proposition 2 as defined above.

Case 2. If \(f(a) = b = g(c) \), then apply Case 1 to \(f, g \)-functions to get two functions \(j, k \); now \(j, T_{cc}k \) satisfy Proposition 2.

Case 3. If \(f(a) = b = g(c') \), then apply Case 1 to \(f, g \)-functions to get two functions \(j, k \); now \(T_{aa}jT_{dd}, kT_{dd} \) satisfy Proposition 2.

Case 4. If \(f(a) = b = g(c) \), then apply Case 1 to \(f, g \)-functions to get two functions \(j, k \); now \(T_{aa}jT_{dd}, T_{cc}kT_{dd} \) satisfy Proposition 2.

This completes the proof of Proposition 2.

Lemma 4. Let the two functions \(h, k \) map \([a, a']\) onto \([b, b']\) and let \(h \) be linear and \(k \) be piecewise linear. If \(k \) has DCAV, then slope \(h \leq \) slope \(k \).

The Construction. We are now ready to construct (using Proposition 2) sequences \((f_n \mid n \in \mathbb{N})\), \((g_n \mid n \in \mathbb{N})\), \((A_n \mid n \in \mathbb{N})\) which satisfy the conditions of Proposition 1. Specifically we desire two sequences \((f_n \mid n \in \mathbb{N})\), \((g_n \mid n \in \mathbb{N})\) of piecewise linear functions mapping \([0, 1]\) into itself such that for every \(x \in [0, 1] \) either \(|x - f_2(x)| > \frac{1}{4} \) or \(|x - g_2(x)| > \frac{1}{4} \), and a sequence \((A_n \mid n \in \mathbb{N})\) of finite subsets of \([0, 1]\) such that \(0, 1 \in A_0 \), and such that the following properties are satisfied for every \(n \in \mathbb{N} \):

- **P₁(n):** for \(i = 1, 2, 3, 4, 5 \) as in Proposition 1;
- **P₂(n):** \(f_n |\lambda_{n+1} = f_{n+1} |\lambda_{n+1} \) and \(g_n |\lambda_{n+1} = g_{n+1} |\lambda_{n+1} \);
- **P₃(n):** \(f_n(B(g_n)) \cup g_n(B(f_n)) \subseteq A_n \);
- **P₄(n):** \(A_n \subseteq A_{n+1} \) and;
- **P₁₀(n):** for all \(r', s' \) consecutive in \(A_n \) such that \(r' < s' \),

and \(f_n |[r', s'] \) and \(g_n |[r', s'] \) each have DCAV.

Now define \(A_0 = \{0, 1\} \), \(A_1 = \{0, 1/3, 2/3, 1\} \), and

\[
A_2 = \{0, 1/9, 2/9, 1/3, 6/15, 7/15, 8/15, 9/15, 2/3, 7/9, 8/9, 9/9, 1\}.
\]

Also, define \(f_0, g_0, f_1, g_1, f_2, \) and \(g_2 \) at each \(x \in [0, 1] \) as follows:

if \(0 \leq x < 1/3 \), let \(f_0(x) = 3x \), and let \(g_0(x) = 1 - 3x \);
if \(1/3 \leq x < 2/3 \), let \(f_0(x) = 2 - 3x \), and let \(g_0(x) = 3x - 1 \);
if \(2/3 \leq x \leq 1\), let \(f_0(x) = 3x - 2\), and let \(g_0(x) = 3 - 3x\); if \(0 \leq x < 1/3\) or \(2/3 \leq x \leq 1\), let \(f_1(x) = f_0(x)\), and let \(g_1(x) = g_0(x)\); if \(1/3 \leq x \leq 6/15\), let \(f_1(x) = (8/3) - 5x\); if \(6/15 \leq x < 7/15\), let \(f_2(x) = 5x - (4/3)\); if \(7/15 \leq x < 2/3\), let \(f_2(x) = (10/3) - 5x\); if \(1/3 \leq x \leq 8/15\), let \(g_1(x) = 5x - (5/3)\); if \(8/15 \leq x < 9/15\), let \(g_1(x) = (11/3) - 5x\); if \(9/15 \leq x \leq 2/3\), let \(g_1(x) = 5x - (7/3)\); if \(0 \leq x < 6/15\) or \(7/15 \leq x \leq 1\), let \(f_2(x) = f_1(x)\); if \(6/15 \leq x < 31/75\), let \(f_2(x) = (25/3)x - (8/3)\); if \(31/75 \leq x \leq 32/75\), let \(f_2(x) = (38/9) - (25/3)x\); if \(32/75 \leq x < 7/15\), let \(f_2(x) = (25/3)x - (26/9)\); if \(0 \leq x < 8/15\) or \(9/15 \leq x \leq 1\), let \(g_2(x) = g_1(x)\); if \(8/15 \leq x < 41/75\), let \(g_2(x) = (49/9) - (25/3)x\); if \(41/75 \leq x \leq 42/75\), let \(g_2(x) = (25/3)x - (11/3)\); if \(42/75 \leq x < 9/15\), let \(g_2(x) = (17/3) - (25/3)x\). Observe that \(f_i, g_i, A_i\) for \(i = 0, 1, 2\) have been defined satisfying the desired properties. By Figure 2 for each \(x \in [0, 1]\), \(|x - f_2(x)| > 1/6\) or \(|x - g_2(x)| > 1/6\). Also, the properties \(P_1(i-1), P_2(i), P_3(i-1), P_4(i-1), P_5(i-1), P_6(i), P_7(i-1), P_8(i-1), P_9(i-1), P_{10}(x)\) are satisfied for \(i=1, 2\). Proceed to define \((f_n \mid n \in N), (g_n \mid n \in N), \) and \((A_n \mid n \in N)\) by induction; let \(n \in N, n \geq 2\), and assume that \(f_n, g_n, A_i\) (for \(i = 0, 1, 2, \ldots, n\)) have been defined satisfying the desired properties, especially: \(P_1(i-1), P_2(i), P_3(i-1), P_4(i-1), P_5(i-1), P_6(i), P_7(i-1), P_8(i-1), P_9(i-1), P_{10}(i)\) for \(i = 1, 2, \ldots, n\). Define \(A_{n+1} = f_n^{-1}(A_n)\). Notice that

\[
A_{n+1} = f_n^{-1}(A_n) = f_n^{-1}g_n^{-1}(A_n-1) = g_n^{-1}f_n^{-1}(A_n-1) = g_n^{-1}(A_n),
\]

so \(P_0(n)\) is satisfied. For each \(x \in [0, 1]\) define \(f_{n+1}(x)\) and \(g_{n+1}(x)\) in the following manner. There exist two consecutive points \(d, d'\) of \(A_{n+1}\) such that \(d \leq x \leq d'\) (since \(A_{n+1}\) is finite and contains 0, 1). We can set \(\{a, a'\} = \{g_n(d), g_n(d')\}, \{b, b'\} = \{f_n^{-1}g_n(d), f_n^{-1}g_n(d')\}, \) and \(\{c, c'\} = \{f_n(d), f_n(d')\}\) such that \(a < a', b < b', \) and \(c < c'\) by Lemma 2. Now observe that \(f_{n\mid[a, a']}, g_{n\mid[c, c']}\) satisfy the hypothesis of Proposition 2 for \(f, g\) respectively; so let \(j, k\) be defined by Proposition 2, \(j\) mapping \([d, d']\) onto \([a, a']\) and \(k\) mapping \([d, d']\) onto \([c, c']\). If \(g_n(d) = a,\) then define \(f_{n+1}(x) = k(x),\) and \(g_{n+1}(x) = j(x);\) if \(g_n(d) = a',\) then define \(f_{n+1}(x) = kT_{dd}(x),\) and \(g_{n+1}(x) = jT_{dd}(x).\) In the above procedure, for a fixed \(x \in [0, 1]\), the points \(d, d'\) (defined to be consecutive points in \(A_{n+1}\) such that \(d \leq x \leq d'\)) are not necessarily unique. However, \(f_{n+1}\) and \(g_{n+1}\) are well defined functions since \(g_{n+1}|_{A_{n+1}} = g_n|_{A_{n+1}}\) by definition, and hence \(f_{n+1}|_{A_{n+1}} = f_n|_{A_{n+1}}.\) Therefore \(P_1(n)\) is satisfied. \(P_1(n)\) is satisfied since for each \(x \in [0, 1]\) there exist \(d, d'\) consecutive in \(A_{n+1}\) such that \(d \leq x \leq d'\) and either \(f_n g_{n+1}(x) = f_j T_{dd}(x) = g_n kT_{dd}(x) = g_n f_{n+1}(x),\) or \(f_n g_{n+1}(x) = f_k j(x) = g_n f_{n+1}(x)\) where \(j, k\) are defined by Proposition 2 as above; hence \(f_n g_{n+1}\).
Figure 2. The graphs of f_n, g_n and the diagonal; f_n or g_n lies between the dotted lines wherever $|x-f_n(x)| \leq \frac{1}{k}$ or $|x-g_n(x)| \leq \frac{1}{k}$ respectively.

Comment: Simultaneous to and independent of the author’s preceding work(1), W. M. Boyce [1], [2] constructed essentially the same solution to the commuting function problem.

Remark. Simultaneous to and independent of the author’s preceding work(1), W. M. Boyce [1], [2] constructed essentially the same solution to the commuting function problem.

(1) Compare [1] and [3].
function problem defined above. These functions are nowhere Lipschitzian; smoother solutions are described in Part II below.

Part II

Notation. For any real valued mapping \(h \) defined on a subset of the reals, let \(h^\ast \) denote the map: \(h^\ast(x) = 1 - h(1 - x) \) for each \(x \) for which \(h(1 - x) \) is defined; also, \(h \) will be called \(s \)-Lipschitzian provided \(s \) is a real number and for each \(x, y \) in the domain of \(h \), \(|h(x) - h(y)| \leq s \cdot |x - y| \). Now pick any \(b \) in \([0, \frac{1}{2}]\), and define

\[
 s = \frac{3 - 2b + (6 - 4b)^{1/2}}{1 - 2b}.
\]

Define the three linear functions:

- \(h_1: [b, (1 - b + sb)/s] \to [b, 1] \) by \(h_1(x) = sx - sb + b \);
- \(h_2: [(1 - b + sb)/s, (2 - b + sb)/s] \to [0, 1] \) by \(h_2(x) = 2 - sx + sb - b \);
- \(h_3: [(2 - b + sb)/s, (3 - 2b + sb)/s] \to [0, 1 - b] \) by \(h_3(x) = -2 + sx - sb + b \).

And define the piecewise linear function \(h: [b, (3 - 2b + sb)/s] \to [0, 1] \) by \(h = h_1 \cup h_2 \cup h_3 \). Let \(C_b \) denote all continuous functions from \([0, b]\) to \([0, b]\) which have \(b \) as a fixed point.

Definition. For each \(g \) in \(C_b \) let \(\bar{g} \) denote the unique extension of \(g \) defined by:

1. \(\bar{g}(x) = g(x) \) whenever \(0 \leq x \leq b \);
2. \(\bar{g}(x) = h(x) \) whenever \(b \leq x \leq h_3^{-1}(1 - b) \);
3. \(\bar{g}(x) = h_1^{-1}\bar{g}(h^\ast(x)) \) whenever \(h_3^{-1}(1 - b) \leq x \leq h_3^{-1}(h_3^{-1}(0)) \);
4. \(\bar{g}(x) = h_2^{-1}\bar{g}(h^\ast(x)) \) whenever \(h_2^{-1}(h_2^{-1}(0)) \leq x \leq 1 - b \); and
5. \(\bar{g}(x) = \) the fixed point of \(h^\ast \) whenever \(1 - b \leq x \leq 1 \).

See Figure 3.

Remark. That the preceding definition is consistent can be checked by direct mechanical methods, or (as suggested by Felix Albrecht) by a Zorn’s Lemma argument. The following sketch of a proof that \(\bar{g} \) is uniquely defined above for any \(s \)-Lipschitzian \(g \) in \(C_b \) was suggested by David Boyd.

Proof. Let \(g \) be an \(s \)-Lipschitzian function in \(C_b \), and let \(L \) denote the set of \(s \)-Lipschitzian functions from \([0, 1]\) to itself which satisfy properties 1, 2, and 5 for \(g \) in the Definition. Now define the mapping \(T \) from \(L \) to \(L \): for any \(f \) in \(L \), let

\[
 T(f)(x) = f(x) \text{ whenever } 0 \leq x \leq h_3^{-1}(1 - b) \text{ or whenever } 1 - b \leq x \leq 1; \\
 T(f)(x) = h_1^{-1}f(h^\ast(x)) \text{ whenever } h_3^{-1}(1 - b) \leq x \leq h_3^{-1}(h_3^{-1}(0)); \\
 T(f)(x) = h_2^{-1}f(h^\ast(x)) \text{ whenever } h_2^{-1}(h_2^{-1}(0)) \leq x \leq 1 - b.
\]

To see that \(T(f) \) is in \(L \), observe that \(T(f) \) is \(s \)-Lipschitzian by a system of inequalities using the facts that \(h_1^{-1} \) and \(h_2^{-1} \) are linear and \(1/s \)-Lipschitzian, \(h_3^{-1}(0) = h_3^{-1}(0), h^\ast \) is \(s \)-Lipschitzian, and the fixed points of \(h^\ast \) are \(h_3^{-1}(1 - b), (s - 1)(1 - b)/(s + 1) \), and \(1 - b \).

\(L \) is clearly a complete metric space with respect to the supremum norm metric, and \(T \) is a contraction of this metric space with constant \(1/s \) (since \(h_1^{-1} \) and \(h_2^{-1} \) are linear and \(1/s \)-Lipschitzian).
are 1/s-Lipschitzian). Hence there is a unique function g in L such that $T(g) = g$, and this function satisfies the definition of g.

Lemma 5. For any f, g in C_0 and any x in $[\frac{1}{2}, 1]$,

1. $f^*(x) = x$ implies $g(x) \neq x$, and
2. $\overline{f}^*(g(x)) = g(f^*(x))$.

Proof of (1). As a comment to clarify notation, $\overline{f}^*(x) = (\overline{f})^*(x)$. Observe that the domain of definition of h^* is $[h_{3}^{-1}(b), 1 - b]$, and

$$h_{3}^{-1}(b) = \frac{-3 + 2b + s - sb}{s} = 1 - b + \frac{(1 - 2b)(2b - 3)}{3 - 2b + 6 - 4b} < \frac{1}{2}$$

since $0 \leq b < \frac{1}{2}$. So on $[\frac{1}{2}, 1]$, the fixed points of \overline{f}^* are either in $[1 - b, 1]$ or are the fixed points of h^*. By definition of \overline{g} on $[1 - b, 1]$, $\overline{g}(x)$ equals the fixed point of h_{3}^* which equals $(1 - b)(s - 1)/(1 + s) < 1 - b \leq x$ for each $x \in [1 - b, 1]$. Therefore \overline{g}
and \(f^* \) have no common fixed point in \([1 - b, 1]\). The only fixed points of \(h^* \) are the fixed points of \(h^*_i \) for \(i = 1, 2, 3 \). The fixed point of \(h^*_i \) is \(1 - b \), which (as has just been seen) is not a fixed point of \(g \). Denote the fixed point of \(h^*_i \) by \(x_2 \);
\[
x_2 = \frac{(1 - b)(s - 1)}{s + 1} < \frac{b - 2 + s + s^2 - s^2 b - 2s}{s^2} = h^*_2 - 1(h^*_2 - 1(0)),
\]
and so
\[
\bar{g}(x_2) \in h^*_1 - 1([0, 1]) = [(s - 1 + b - sb)/s, (s + b - sb)/s].
\]
However,
\[
x_2 = \frac{(1 - b)(s - 1)}{s + 1} < \frac{s - 1 + b - sb}{s} \leq \bar{g}(x_2),
\]
so \(x_2 \), the fixed point of \(h^*_2 \), is not a fixed point for \(g \). Let \(x_3 \) denote the fixed point of \(h^*_3 \);
\[
x_3 = \frac{3 - s + sb - b}{1 - s} = \frac{3 - 2b + sb}{s} = h^*_3 - 1(1 - b).
\]
Therefore \(\bar{g}(x_3) = g(h^*_3 - 1(1 - b)) = 1 - b > x_3 \). Therefore \(f^* \) and \(g \) have no common fixed point in \([1, 1]\).

Proof of (2). For each \(x \in [1 - b, 1] \), \(f^*(g(x)) = f^*(x_2) = h^*_2(x_2) = x_2 \), and \(g(f^*(x)) = g(1 - f(1 - x)) = g(1 - f(1 - x)) = x_2 \) since \(f(1 - x) \in [0, b] \). Therefore \(f^*(g(x)) = \bar{g}(f^*(x)) \) for each \(x \in [1 - b, 1] \). For each \(x \in [h^*_2 - 1(h^*_2 - 1(0)), 1 - b] \),
\[
f^*(\bar{g}(x)) = f^*(h^*_2 - 1\bar{g}(h^*(x))) = h^*_2 h^*_2 - 1\bar{g}(h^*(x)) = \bar{g}(f^*(x));
\]
hence, \(f^*(\bar{g}(x)) = \bar{g}(f^*(x)) \). For each \(x \in [h^*_3 - 1(1 - b), h^*_3 - 1(h^*_3 - 1(0))] \),
\[
f^*(\bar{g}(x)) = f^*(h^*_3 - 1\bar{g}(h^*(x))) = h^*_3 h^*_3 - 1\bar{g}(h^*(x)) = \bar{g}(f^*(x));
\]
hence \(f^*(\bar{g}(x)) = \bar{g}(f^*(x)) \). Now \(h^*_3 - 1(1 - b) \) is the fixed point of \(h^*_3 \) (as has been seen above), so
\[
h^*_3([h^*_3 - 1(b), h^*_3 - 1(1 - b)]) = [b, h^*_3 - 1(1 - b)]
\]
which equals the domain of definition of \(h \); also \(h^*_3 - 1(1 - b) \) is the fixed point of \(h_3 \), so
\[
h_3([h^*_3 - 1(b), h^*_3 - 1(1 - b)]) = [h^*_3 - 1(b), 1 - b]
\]
which equals the domain of definition of \(h^* \). Observe that the two piecewise linear functions
\[
h^*(h|_{[h^*_3 - 1(b), h^*_3 - 1(1 - b)]}), \quad (h^*(h|_{[h^*_3 - 1(0), h^*_3 - 1(1 - b)]}))^*
\]
are each the union of three linear functions and map the points \(h^*_3 - 1(b) \), \(h^*_3 - 1(1) \), \(h^*_3 - 1(0) \), \(h^*_3 - 1(1 - b) \) to \(b, 1, 0, 1 - b \) respectively; hence the two functions coincide. Therefore for each \(x \in [\frac{1}{2}, h^*_3 - 1(1 - b)] \), \(x \in [h^*_3 - 1(b), h^*_3 - 1(1 - b)] \),
\[
f^*(\bar{g}(x)) = f^*(h_3(x)) = h^*h(x) = (h^*h)^*(x) = 1 - h^*(h(1 - x))
\]
\[
h(1 - h(1 - x)) = h(h^*(x)) = g(h^*_3(x)) = \bar{g}(f^*(x)).
\]
Therefore \(f^* \) and \(g \) commute on \([\frac{1}{2}, 1]\) and have no common fixed point in \([\frac{1}{2}, 1]\).
Proposition 3. For any \(f, g \) in \(C_b \), \(f^* \) and \(g^* \) form a solution to the commuting function problem.

Proof. Let \(f, g \) be in \(C_b \). Then by Lemma 5, \(f^* \) and \(g^* \) commute without common fixed point on \([\frac{1}{2}, 1]\); also \(f^* \) and \(g \) commute without common fixed point on \([\frac{1}{2}, 1]\). Therefore \(f^{**} \) and \(g^* \) commute without common fixed point on \([0, \frac{1}{2}]\). But \(f^{**} = f \), so \(f \) and \(g^* \) form a solution to the commuting function problem.

Corollary. If \(f, g \) are in \(C_b \), then:
1. \(f, g^* \) form a solution to the commuting function problem;
2. \(f, g^* \) are s-Lipschitzian if and only if \(f, g \) are s-Lipschitzian;
3. \(f, g^* \) are linear on each component of a dense open subset of \([0, 1]\) if and only if \(f, g \) are linear on each component of a dense open subset of \([0, 1]\); and
4. \(f, g^* \) are differentiable almost everywhere if and only if \(f, g \) are differentiable almost everywhere.

References

Wesleyan University,
Middletown, Connecticut
University of Minnesota,
Minneapolis, Minnesota