TOPOLOGICAL CONJUGACY OF AFFINE TRANSFORMATIONS OF COMPACT ABELIAN GROUPS

BY

PETER WALTERS

0. Introduction. We consider the following problem. If \(X \) and \(Y \) are compact connected metric abelian groups, \(T = a + A \) an affine transformation of \(X \) and \(S = b + B \) an affine transformation of \(Y \), what are necessary and sufficient conditions for every continuous mapping \(g \) of \(X \) onto \(Y \) satisfying \(gT = Sg \) to be affine? Sufficient conditions are obtained in Theorem 3 in the case when the character group \(\hat{Y} \) of \(Y \) is polynomially annihilated by \(B \) (see Definition 1). In Theorem 6 we show that these conditions are also necessary when \(Y \) is a finite-dimensional group and in Theorem 8 we state (without proof) that this is also true in a more general setting. An example is given to show the assumption that \(\hat{Y} \) be polynomially annihilated by \(B \) cannot be dropped from Theorem 3. We also give an example which shows Theorem 6 to be false if \(Y \) is not finite-dimensional but \(\hat{Y} \) is polynomially annihilated by \(B \).

Theorem 7 deals with the case when \(T \) and \(S \) are endomorphisms of an \(n \)-dimensional group. A conjugacy property of affine transformations with quasi-discrete spectrum is given in Theorem 4, and Theorem 5 gives information on continuous roots of affine transformations.

The results of this paper were proved in [10] for the cases when \(X \) and \(Y \) are finite-dimensional tori. The idea of using Theorem 1 was obtained from the paper [2].

1. Definitions and notations. Let \(Y \) be a compact connected metric abelian (c.c.m.a.) group. We shall use additive notation in such groups. \(\hat{Y} \) will denote the discrete torsion-free countable abelian character group of \(Y \), and multiplicative notation will be used in \(\hat{Y} \). \(Y \) can be written as an inverse limit \(\prod_{m \geq 1} (Y_m, \sigma_m) \), where each \(Y_m \) is a finite-dimensional torus and \(\sigma_m \) is a homomorphism of \(Y_{m+1} \) onto \(Y_m \). If \(Y \) is \(n \)-dimensional then each \(Y_m \) can be chosen to be an \(n \)-dimensional torus.

An affine transformation \(S \) of a c.c.m.a. group \(Y \) is a transformation of the form \(S(y) = b + B(y) \), \(y \in Y \), where \(b \in Y \) and \(B \) is an endomorphism of \(Y \) onto \(Y \). We write \(S = b + B \). Every affine transformation of \(Y \) is continuous and preserves Haar measure. An endomorphism \(B \) of \(Y \) onto \(Y \) induces a one-to-one dual endomorphism, which we also denote by \(B \), of \(\hat{Y} \) into \(\hat{Y} \) defined by \((By)(y) = y(By) \), \(y \in Y \), \(y \in \hat{Y} \).

Received by the editors March 28, 1968.

95
The affine transformation $S=b+B$ of Y is ergodic if and only if $B^n\gamma=\gamma$, $\gamma \in \hat{Y}$, $n>0$, implies $B^ny=\gamma$, and $[b, (B-I)Y] = Y$ where $[b, (B-I)Y]$ denotes the smallest closed subgroup of Y containing b and $(B-I)Y$. (I is the identity mapping of Y [6].) Also, $S=b+B$ is ergodic if and only if there exists $y_0 \in Y$ such that \(\{S^n(y_0) \mid n \geq 0 \} \) is dense in Y [10]. From the first condition it follows that an endomorphism B of Y onto Y is ergodic if and only if $B^n\gamma=\gamma$, $\gamma \in \hat{Y}$, $n>0$, implies $\gamma=1$ (see also [5]). Also from the first condition we have that $S=b+B$ is strong mixing if and only if B is ergodic (see also [3]).

R^n will denote real Euclidean n-space, Z^n the subgroup of R^n of points with integer coordinates and $K^n=R^n/Z^n$ the n-dimensional torus. (p) and $J(p)$ will denote the real and imaginary parts of the complex number p, and if $F(x)=(P_1(x), P_2(x), \ldots, P_n(x))$ is a transformation from a set X to complex n-space C^n, then P and J will denote the transformations of X to R^n defined by $(P)(x) = (P_1(x), \ldots, P_n(x))$ and $(J)(x) = (J_1(x), \ldots, J_n(x))$ respectively.

Q will denote the field of rational numbers and $Q[\theta]$ the algebra of all polynomials in θ with coefficients from Q.

2. Preliminary results.

Theorem 1 (Van Kampen). Let Y be a c.c.m.a. group and f be a continuous function from Y to the set of complex numbers of unit modulus. Then f can be expressed in the form $f(y) = a(y)e^{\phi(y)}$, $y \in Y$, where $a \in \hat{Y}$ is uniquely determined by f, $\phi: Y \to R$ is continuous and is uniquely determined up to an additive constant.

Proofs of this theorem can be found in [9] and [2]. The following is immediate from Theorem 1.

Corollary 1.1. Let X and Y be c.c.m.a. groups and $g: X \to Y$ a continuous mapping. For each $y \in Y$ there exists a unique $a_y \in X$ and a continuous mapping $\phi_y: X \to R$ unique up to an additive constant, such that $(g \circ \phi)(x) = a(x)\exp [i\phi(x)]$, $x \in X$. Furthermore \(\exp [i\phi(y)(x)] = \exp [i\phi(x)] \cdot \exp [i\phi(y)(x)] \), $x \in X$, $y, y_1 \in \hat{Y}$.

Theorem 2. Let X and Y be c.c.m.a. groups and suppose that for every $\gamma \in \hat{Y}$ there exists a continuous mapping $\phi_\gamma: X \to R$ such that $\phi_{\gamma^1} = \phi_\gamma + \phi_{\gamma^1}$, $\gamma, \gamma^1 \in \hat{Y}$. Then there exists a continuous mapping $u: X \to Y$ such that $\gamma \circ u(x) = \exp [i\phi(x)]$, $x \in X$, $\gamma \in \hat{Y}$, and u is homotopic to a constant.

Proof. For each $x \in X$ the mapping $\gamma \to \exp [i\phi(x)]$ is a character of \hat{Y} and therefore there exists $y_x \in Y$ such that $\gamma(y_x) = \exp [i\phi(x)]$. Define $u: X \to Y$ by $u(x) = y_x$. u is clearly continuous.

For each $x \in X$ and each $t \in [0, 1]$ the mapping $\gamma \to \exp [it\phi(x)]$ is a character of \hat{Y} and, as above in the case $t=1$, there exists a continuous mapping $u_t: X \to Y$ such that $\gamma(u_t(x)) = \exp [it\phi(x)]$, $x \in X$, $\gamma \in \hat{Y}$. u_t is a homotopy between u and a constant.
3. Topological conjugacy and groups with polynomially annihilated character groups. Let Y be a c.c.m.a. group and B an endomorphism of Y onto Y. Let $p(\theta) = n_0 + n_1 \theta + \ldots + n_k \theta^k$ be a polynomial over \mathbb{Z}. We shall say that p is an annihilating polynomial of $\gamma \in \hat{Y}$ with respect to B if $\gamma^{n_0} \cdot B^{n_1} \gamma^{n_2} \cdots B^n \gamma^{n_k} = 1$.

Suppose $\gamma \in \hat{Y}$ has a nontrivial annihilating polynomial with respect to B. Let M_γ denote the set of all polynomials over \mathbb{Q} some integral multiple of which is an annihilating polynomial of γ with respect to B. M_γ is an ideal in $\mathbb{Q}[\theta]$ and therefore there exists a unique monic polynomial $q_\gamma \in \mathbb{Q}[\theta]$ such that M_γ is the principal ideal generated by q_γ [8, p. 121]. If $q_\gamma(\theta) = s_0 + s_1 \theta + \ldots + s_{l-1} \theta^{l-1} + \theta^l$ then $s_0 \neq 0$ for otherwise $q_\gamma(\theta) = s_1 + s_2 \theta + \ldots + s_{l-1} \theta^{l-2} + \theta^{l-1}$ would be a monic polynomial generating M_γ. If n_γ is the lowest common denominator of the nonzero members of $s_0, s_1, \ldots, s_{l-1}$ then $p_\gamma(\theta) = n_\gamma s_0 + n_\gamma s_1 \theta + \ldots + n_\gamma \theta^l$ is a polynomial over \mathbb{Z} which will be called the minimal annihilating polynomial of γ with respect to B.

Definition 1. Let Y be a c.c.m.a. group and B an endomorphism of Y onto Y. We say that \hat{Y} is polynomially annihilated by B if every element of \hat{Y} has a nontrivial annihilating polynomial with respect to B.

If Y is an n-dimensional c.c.m.a. group then \hat{Y} is polynomially annihilated by any endomorphism B of Y onto Y. This follows because \hat{Y} is isomorphic to a subgroup of the additive group \mathbb{Q}^n (the direct sum of n copies of \mathbb{Q}) and therefore the one-to-one endomorphism B of \hat{Y} corresponds to an $n \times n$ matrix with rational entries and nonzero determinant. The Cayley-Hamilton theorem shows that some integral multiple of the characteristic polynomial of this matrix is an annihilating polynomial, with respect to B, of every element of \hat{Y}. If $q(\theta) = s_0 + s_1 \theta + \ldots + s_n \theta^n$ is the characteristic polynomial of some matrix representation of B and if n_γ is the lowest common denominator of the nonzero members of $s_0, s_1, \ldots, s_{n-1}$, then the polynomial $p(\theta) = n_\gamma s_0 + n_\gamma s_1 \theta + \ldots + n_\gamma \theta^n$ is a polynomial over \mathbb{Z}, which will be called the annihilating polynomial of \hat{Y} with respect to B. This polynomial is independent of the matrix representation of B.

The following lemma will be used in the proof of Theorem 3.

Lemma 1. Let X be a c.c.m.a. group and $T = a + A$ an affine transformation of X. Suppose $\Phi: X \rightarrow \mathbb{R}^n$ is a nonconstant continuous function and M is a linear transformation of \mathbb{R}^n such that $\Phi(Tx) = M \Phi(x) + d$, $x \in X$, where $d \in \mathbb{R}^n$. Then there exists $\delta \in \hat{X}$, $\delta \neq 1$, and a root λ, with $|\lambda| = 1$, of the characteristic equation of M such that $A^p \delta = \delta$ for some $p \geq 1$ and $\delta(a + A(a) + \ldots + A^{p-1}(a)) = \lambda^p$ for all such p.

Proof. We consider \mathbb{R}^n as a subset of \mathbb{C}^n (complex n-space) in the usual way and complexify M. There exists an invertible linear transformation U of \mathbb{C}^n such that $U^{-1}MU = D_M$, the Jordan normal form of the linear transformation M. Therefore $U^{-1} \Phi(Tx) = D_M U^{-1} \Phi(x) + U^{-1}d$, $x \in X$. If w_1, w_2, \ldots, w_n denotes the fixed basis of \mathbb{R}^n then w_1, w_2, \ldots, w_n is also a basis, using complex coefficients for \mathbb{C}^n. Suppose $U^{-1} \Phi(x) = \sum_{i=1}^n f_i(x) w_i$. Each $f_i: X \rightarrow \mathbb{C}$ is continuous, and if i_0 is the least positive integer for which f_{i_0} is nonconstant then $f_{i_0}(Tx) = M f_{i_0}(x) + e$, $x \in X$, where $e \in \mathbb{C}$.
and λ is an eigenvalue of M. If $I: X \rightarrow C$ is defined by $I(x) = \int_X f(x) \, dm$, where m denotes Haar measure on X, then $I(Tx) = \lambda(I(x))$ and I is nonconstant and continuous. Since T maps X onto X, $\|I(Tx)\| = |\lambda| \sup_X |I(x)|$ implies $|\lambda| = 1$. But $I \in L^2(X)$ and therefore $I(x) = \sum_i b_i \delta_i(x)$ (L^2 convergence) where $\delta_i \in \hat{X}$ and $\sum_i |b_i|^2 < \infty$. From the equation $I(T^px) = \lambda^p I(x)$, $p \geq 1$, we have

$$\sum_i b_i \delta_i(a + Aa + \cdots + A^{p-1}a) \delta_i(A^p x) = \lambda^p \sum_i b_i \delta_i(x) \quad (L^2 \text{ convergence}).$$

If $\delta_i, A\delta_i, A^2\delta_i, \ldots$ are all distinct then $b_i = 0$ for otherwise the condition $\sum_i |b_i|^2 < \infty$ is violated. Therefore $b_i \neq 0$ implies $A^p \delta_i = \delta_i$ for some $p \geq 1$ and when this occurs $\delta_i(a + Aa + \cdots + A^{p-1}a) = \lambda^p$. Since $I(x)$ is nonconstant there must be some $\delta_i \in \hat{X}$, $\delta_i \neq 1$, with this property.

Theorem 3. Let X and Y be c.c.m.a. groups. Let $T = a + A$ be an affine transformation of X and $S = b + B$ an affine transformation of Y. Suppose further that \hat{Y} is polynomially annihilated by B. If there exists a nonaffine continuous mapping $g : X \rightarrow Y$ such that $gT = Sg$ then there exists $\delta \in \hat{X}$, $\delta \neq 1$, and a root λ, with $|\lambda| = 1$, of the minimal annihilating polynomial with respect to B of some element of \hat{Y}, such that $A^p \delta = \delta$ for some $p \geq 1$ and $\delta(a + Aa + \cdots + A^{p-1}a) = \lambda^p$ for all such p.

Proof. Using the notation of Corollary 1.1, for $\gamma \in \hat{Y}$ let

$$(\gamma \circ g)(x) = \alpha_{\gamma}(x) \exp [i\phi_{\gamma}(x)],$$

where $\alpha_{\gamma} \in \hat{X}$ and $\phi_{\gamma} : X \rightarrow \mathbb{R}$ is continuous. Since g is nonaffine there exists $\gamma_0 \in \hat{Y}$ such that ϕ_{γ_0} is nonconstant. Applying $\gamma \in \hat{Y}$ to the equation $gT = Sg$ and using the uniqueness asserted in Corollary 1.1 we have $\alpha_{\gamma}(a) \exp [i\phi_{\gamma}(Tx)] = \gamma(b) \exp [i\phi_{\gamma}(x)]$. Since X is connected this implies

$$\phi_{\gamma}(Tx) = \phi_{B\gamma}(x) + c_{\gamma}, \quad x \in X,$$

where $c_{\gamma} \in \mathbb{R}$. Suppose that p_{γ_0}, the minimal annihilating polynomial of γ_0 with respect to B, is of degree n. Define $\Phi : X \rightarrow \mathbb{R}^n$ by

$$\Phi(x) = \begin{bmatrix} \phi_{\gamma_0}(x) \\ \phi_{B\gamma_0}(x) \\ \vdots \\ \phi_{B^{n-1}\gamma_0}(x) \end{bmatrix}, \quad x \in X.$$
Then $\Phi(Tx) = M\Phi(x) + d, x \in X$, where $d \in \mathbb{R}^n$, and the result follows from Lemma 1 since p_{r_0} is the characteristic polynomial of M.

Corollary 3.1. Let X, Y, T, S be as in Theorem 3 with the additional assumption that T is ergodic. If there is a nonaffine continuous mapping $g: X \to Y$ such that $gT = Sg$ then there exists $\delta \in \hat{X}, \delta \neq 1$, and a root λ, with $|\lambda| = 1$, of the minimal annihilating polynomial with respect to B of some element of \hat{Y}, such that λ is not a root of unity, $A\delta = \delta$ and $\delta(a) = \lambda$.

Hence if T is strong mixing, all continuous mappings $g: X \to Y$ such that $gT = Sg$ are affine.

Proof. Let δ be the element of \hat{X} and λ the complex number which are determined by Theorem 3. Since $A^p \delta = \delta$ for some $p \geq 1$, the ergodicity of T implies $A\delta = \delta$ and hence $\delta(a) = \lambda$. If λ were a root of unity then since $[a, (A - I)X] = X$, δ would only assume a finite number of values on X and would have to be the identity character.

Lastly, if T is strong mixing then A is ergodic and there is no $\delta \in \hat{X}, \delta \neq 1$, with $A\delta = \delta$.

The notion of a measure-preserving transformation with quasi-discrete spectrum has been defined by Abramov [1], and the notion of a homeomorphism with quasi-discrete spectrum has been defined by Hahn and Parry [4]. An ergodic affine transformation $S = b + B$ of a c.c.m.a. group Y has quasi-discrete spectrum as a (Haar) measure-preserving transformation if and only if it has quasi-discrete spectrum as a homeomorphism. In fact $S = b + B$, assumed to be ergodic, has quasi-discrete spectrum in either sense if and only if $\bigcap_{n=0}^{\infty} (B-I)^n Y = \{0\}$, where I denotes the identity mapping of Y [7]. The following result extends Theorem 6 of the paper [4].

Theorem 4. Let X and Y be c.c.m.a. groups and let $T = a + A$ be an ergodic affine transformation of X and $S = b + B$ an ergodic affine transformation of Y. If S has quasi-discrete spectrum then all continuous mappings $g: X \to Y$ satisfying $gT = Sg$ are affine.

Proof. Let $\gamma \in \hat{Y}$. There exists $n \geq 1$ such that $(\theta - I)^n$ is an annihilating polynomial of γ with respect to B. It follows that the roots of the minimal annihilating
polynomial of y with respect to B are equal to 1. The result follows from Corollary 3.1.

Theorem 5. Let Y be a c.c.m.a. group and $S = b + B$ a strong mixing affine transformation of Y such that \hat{Y} is polynomially annihilated by B. Then every continuous pth root ($p \geq 1$) of S is an affine transformation and S has a continuous pth root if and only if there is an endomorphism C of Y onto Y with $C^p = B$.

Proof. Suppose g is a continuous pth root of S. Then $gS = Sg$ and g is affine by Corollary 3.1. Since S is strong mixing B is ergodic and therefore $(B - I)Y = Y$. Choose $y_0 \in Y$ so that $(B - I)y_0 = b$ and the homeomorphism $h: Y \to Y$, defined by $h(y) = y_0 + y$, satisfies $hS = Bh$. Therefore S has a continuous pth root if and only if B has a continuous pth root. Any continuous pth root of B is affine and the pth power of its endomorphism part will be B. Conversely if C is an endomorphism of Y onto Y with $C^p = B$ then C is a continuous pth root of B.

As a special case of Corollary 3.1 we have the following result. If Y is a c.c.m.a. group and B is an ergodic endomorphism of Y onto Y which polynomially annihilates \hat{Y}, then every continuous mapping commuting with B is affine. The example below shows that this result is false (and therefore Theorem 3 is false) if the assumption that Y be polynomially annihilated by B is dropped.

Let K^∞ denote the two-sided infinite-dimensional torus (i.e. the two-sided infinite direct sum of copies of K) and let B denote the shift automorphism of K^∞ defined by $(Bz)_n = z_{n+1}$ if $z = (z_n)$. No nontrivial element of \hat{K}^∞ is polynomially annihilated by B. Let $f: K \to K$ be any homeomorphism and define $F: K^\infty \to K^\infty$ by $(F(z))_n = f(z_n)$, $-\infty < n < \infty$. F is a homeomorphism and $FB = BF$. Moreover F can be chosen to be nonaffine by choosing f nonaffine.

It would be interesting to know if the condition that Y be polynomially annihilated by B follows from the fact that every continuous mapping commuting with B (if ergodic) is affine.

4. **Converses of Theorem 3.**

Lemma 2. Let X and Y be c.c.m.a. groups and let them be represented as $X = \text{inv lim } (X_q, \tau_q)$ and $Y = \text{inv lim } (Y_m, \sigma_m)$ where X_q ($q \geq 1$) and Y_m ($m \geq 1$) are finite-dimensional tori. Let C be a homomorphism of X onto Y and let $u: X \to Y$ be a continuous mapping which depends only on X_{q_0} and which is homotopic to a constant by a homotopy which depends only on X_{q_0}. Then $C + u$ maps X onto Y.

Proof. Let C_m and u_m ($m \geq 1$) denote the mappings of X to Y_m obtained by projecting C and u onto Y_m. $C + u$ will map X onto Y if and only if $C_m + u_m$ maps X onto Y_m for each $m \geq 1$. For each $m \geq 1$ there exists $q_m \geq 1$ such that C_m only depends on X_{q_m}. Let $k_m = \max(q_m, k_0)$. Then C_m can be considered as a homomorphism of X_{k_m} onto Y_m and u_m can be considered as a continuous mapping of X_{k_m} into Y_m which is homotopic (on X_{k_m}) to a constant. The result will follow if we can show that whenever C is a homomorphism of K^n onto K^m and $u: K^n \to K^m$ is a continuous
mapping homotopic to a constant then \(C + u \) maps \(K^n \) onto \(K^m \). However this result follows from Lemma 1 of [10].

Lemma 3. Let \(P: \mathbb{R}^n \rightarrow \mathbb{R}^n \) be a continuous mapping such that \(P(v + \tau) = P(v) \), \(v \in \mathbb{R}^n \), \(\tau \in \mathbb{Z}^n \) and \(\|P(v) - P(v')\| < \|v - v'\| \), \(v, v' \in \mathbb{R}^n \) where \(\| \cdot \| \) denotes the usual norm in \(\mathbb{R}^n \). Let \(\psi: \mathbb{K}^n \rightarrow \mathbb{K}^n \) be the continuous mapping defined by \(\psi \pi = \pi P \), where \(\pi: \mathbb{R}^n \rightarrow \mathbb{K}^n \) is the natural projection. Then \(I + \psi \) is a one-to-one mapping of \(\mathbb{K}^n \). (I denotes the identity mapping of \(\mathbb{K}^n \).

Proof. Let \(I' \) denote the identity mapping of \(\mathbb{R}^n \). \(I' + P \) is a one-to-one mapping because \(v + P(v) = v' + P(v') \) implies \(v - v' = P(v') - P(v) \) and hence \(v = v' \). Suppose \((I' + \psi)\pi(v) = (I' + \psi)\pi(v') \). Then \(\pi(I' + P)(v) = \pi(I' + P)(v') \) and

\[
(I' + P)(v) = (I' + P)(v') + \tau, \quad \tau \in \mathbb{Z}^n
\]

Therefore \(v = v' + \tau \) and \(\pi(v) = \pi(v') \). This proves that \(I + \psi \) is one-to-one.

The following theorem gives a converse to Theorem 3 in the cases when \(F \) is a finite-dimensional group.

Theorem 6. Let \(X \) and \(Y \) be c.c.m.a. groups and suppose that \(Y \) is \(n \)-dimensional. Let \(T = a + A \) be an affine transformation of \(X \), \(S = b + B \) an affine transformation of \(Y \) and suppose there exists a continuous mapping \(h \) of \(X \) onto \(Y \) such that \(hT = Sh \). Suppose further there exists \(\delta \in \hat{X} \), \(\delta \neq 1 \), and a root \(\lambda \), with \(|\lambda| = 1 \), of the annihilating polynomial of \(\hat{Y} \) with respect to \(B \) such that \(A^p \delta = \delta \) for some \(p \geq 1 \) and \(\delta(a + A(a) + \cdots + A^{p-1}(a)) = \lambda^p \) for all such \(p \). Then there exists a nonaffine continuous mapping \(g \) of \(X \) onto \(Y \) such that \(gT = Sg \). Moreover, if \(h \) is given to be a homeomorphism then \(g \) can be chosen to be a homeomorphism.

Proof. We may as well assume that the given mapping \(h \) is affine or there is nothing to prove. Suppose \(h = c + C \), where \(c \in Y \) and \(C \) is a homomorphism of \(X \) onto \(Y \). We shall use Theorem 2 and to do this we have to construct continuous mappings \(\psi_i: X \rightarrow \mathbb{R} \) for each \(\gamma_i \in \hat{Y} \).

Since \(Y \) is \(n \)-dimensional \(\hat{Y} \) is isomorphic to a subgroup \(Q^n \) of the additive group \(Q^n \) and we can choose \(Q^n \) so that if

\[
d_i = (d_{i1}, d_{i2}, \ldots, d_{in}) \text{ where } d_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}
\]

then \(d_i \in Q^n \) (\(1 \leq i \leq n \)). Let \([M]\) be the matrix (with rational entries) representing the action of \(B \) on \(Q^n \), and let \(\gamma_i \in \hat{Y} \) correspond under the above isomorphism to \(d_i \in Q^n \) (\(1 \leq i \leq n \)). Let \(M \) denote the linear transformation of \(\mathbb{R}^n \) induced by the matrix \([M]\).

Suppose that \(p \) is the smallest positive integer such that \(A^p \delta = \delta \). Define \(f: X \rightarrow C \) by

\[
f(x) = \sum_{j=0}^{p-1} \frac{\delta(a + A(a) + \cdots + A^{j-1}(a))}{\lambda^j} A^j(x), \quad x \in X,
\]
f is a nonconstant continuous function satisfying $f(Tx) = \lambda f(x)$, $x \in X$. If w_1, w_2, \ldots, w_n denotes the fixed basis of \mathbb{R}^n it is also a basis for \mathbb{C}^n. Let U be the invertible linear transformation of \mathbb{C}^n such that $U^{-1}MU = D_\lambda$, the Jordan normal form of the complexified linear transformation M. Let j_0 be the largest integer for which w_{j_0} corresponds to the eigenvalue λ of D_λ. Then $U(f(x)w_{j_0})$ is nonconstant and so either $\mathcal{R}U(f(x)w_{j_0})$ or $\mathcal{F}U(f(x)w_{j_0})$ is nonconstant. Suppose, without loss of generality, that $\mathcal{R}U(f(x)w_{j_0})$ is nonconstant and define the mappings $\phi_r : X \to \mathbb{R}$ by

$$\sum_{i=1}^{n} \phi_r(x)w_i = \mathcal{R}U(f(x)w_{j_0}), \quad x \in X.$$

Let $\gamma \in \tilde{Y}$. If $\gamma^m = \gamma_{2}^m \cdot \gamma_{3}^m \cdot \gamma_{n}^m$, $m_0, m_1, \ldots, m_n \in \mathbb{Z}$, $m_0 \neq 0$, define $\phi_\gamma : X \to \mathbb{R}$ by

$$\phi_\gamma(x) = \frac{m_1}{m_0} \phi_{r_1}(x) + \frac{m_2}{m_0} \phi_{r_2}(x) + \cdots + \frac{m_n}{m_0} \phi_{r_n}(x), \quad x \in X.$$

Then $\phi_\gamma = \phi_{r_1} + \phi_{r_2} + \cdots + \phi_{r_n}$, $\gamma \in \tilde{Y}$. Also

$$\sum_{i=1}^{n} \phi_{r_i}(Tx)w_i = \mathcal{R}U(f(Tx)w_{j_0}) = \mathcal{R}UD_M(f(x)w_{j_0})$$

$$= M \sum_{i=1}^{n} \phi_{r_i}(x)w_i = \sum_{i=1}^{n} \phi_{Br_i}(x)w_i.$$

Therefore $\phi_{Br_i}(Tx) = \phi_{Br_i}(x)$, $x \in X$, $1 \leq i \leq n$, and hence $\phi_r(Tx) = \phi_{Br_i}(x)$, $x \in X$, $\gamma \in \tilde{Y}$.

By Theorem 2 there exists a continuous mapping $u : X \to Y$ such that $\gamma(u(x)) = \exp [it\phi_r(x)]$, $x \in X$, $\gamma \in \tilde{Y}$, $u(Tx) = Bu(x)$, $x \in X$, and u is homotopic to a constant.

Let $g : X \to Y$ be defined by $g(x) = c + C(x) + u(x)$, $x \in X$. $g(Tx) = c + C(Tx) + u(Tx)$.

It remains to show that g maps X onto Y. Suppose $X = \text{inv lim } (X_q, \tau_q)$ and $Y = \text{inv lim } (Y_m, \sigma_m)$ where the X_q ($q \geq 1$) are finite-dimensional tori and the Y_m ($m \geq 1$) are n-dimensional tori. Suppose the given character $\delta \in \tilde{X}_{k_0}$. Then each mapping $\phi_\gamma : X \to \mathbb{R}$ only depends on X_{k_0} and therefore u only depends on X_{k_0} and is homotopic to a constant by a homotopy depending only on X_{k_0} (Theorem 2). The fact that g maps X onto Y now follows from Lemma 2.

We now show that if h is given to be a homeomorphism then g can be chosen to be a homeomorphism. Since we are assuming $h = c + C$, C will be an isomorphism of X onto Y. Let $g_t : X \to Y$, $t \in [0, 1]$, be defined by $g_t(x) = c + C(x) + ut(x)$, $x \in X$, where $u_t : X \to Y$ satisfies $\gamma(u_t(x)) = \exp [it\phi_r(x)]$, $x \in X$, $\gamma \in \tilde{Y}$ (Theorem 2). By Lemma 2 g_t is a continuous mapping of X onto Y and $g_T = Sg_0$, $t \in [0, 1]$. We shall show that g_t is one-to-one for sufficiently small t.

It suffices to show that $g_t \circ C^{-1} : Y \to Y$ is one-to-one for sufficiently small t. We have $g_t \circ C^{-1}(y) = c + y + ut \circ C^{-1}y$, $y \in Y$. Let k be the smallest integer for which $\delta \circ C^{-1} \in \tilde{X}_k$, where δ is the given element of \tilde{X}. By the definition of ϕ_r,
\(\gamma \in \hat{Y} \), each \(\phi_{\gamma} \circ C^{-1} \) can be considered as a real-valued function of \(Y_k \), and therefore induces a mapping \(P_{\gamma} : \mathbb{R}^n \rightarrow \mathbb{R} \) defined by \(P_{\gamma}(v) = \phi_{\gamma} \circ C^{-1}(y_v), \ v \in \mathbb{R}^n \), where \(y_v \) is any point of \(Y \) which has component \(v + Z^n \) in \(Y_k \). Since each \(P_{\gamma} \) is a linear combination of sines and cosines of the coordinates of \(\mathbb{R}^n \), there exists a constant \(N \) such that if \(\beta \) is a generator of any \(\hat{Y}_m (m \geq 1) \) then
\[
|P_{\beta}(v) - P_{\beta}(v')| \leq N \|v - v'\|, \quad v, v' \in \mathbb{R}^n,
\]
where \(\|\cdot\| \) denotes the usual norm in \(\mathbb{R}^n \).

Choose \(t_0 \in [0, 1] \) so that \(nt_0N < 1 \). Let \(y, y' \in Y, y \neq y' \). Suppose \(y = (y_1, y_2, \ldots), \ y' = (y'_1, y'_2, \ldots) \) where \(y_i, y'_i \in Y_i, i \geq 1 \). We shall show that \(g_{t_0} \circ C^{-1}(y) \neq g_{t_0} \circ C^{-1}(y') \). If \(y_k = y'_k \) then \(\phi_{\gamma} \circ C^{-1}(y) = \phi_{\gamma} \circ C^{-1}(y'), \ y \in \hat{Y}, \) and therefore \(u_{t_0} \circ C^{-1}(y) = u_{t_0} \circ C^{-1}(y') \). Hence \(g_{t_0} \circ C^{-1}(y) - g_{t_0} \circ C^{-1}(y') = y - y' \neq 0 \). Now suppose \(y_k \neq y'_k \). Considering \(Y_k \) as an \(n \)-torus let \(\beta_1, \beta_2, \ldots, \beta_n \in \hat{Y}_k \) be defined by \(\beta_j(z_1, \ldots, z_n) = \exp(2\pi iz_j) \). Define \(G : Y_k \rightarrow Y_k \) by
\[
G(z_1, \ldots, z_n) = (z_1 + t_0\phi_{\beta_1} \circ C^{-1}(y_2), \ldots, z_n + t_0\phi_{\beta_n} \circ C^{-1}(y_2)) + Z^n
\]
where \(y_z \) is any point of \(Y \) having \(z = (z_1, \ldots, z_n) \) as its component in \(Y_k \). By Lemma 3, since \(t_0 \) is chosen so that \(nt_0N < 1 \), we have that \(G \) is one-to-one. Since \(y_k \neq y'_k \), \(G(y_k) \neq G(y'_k) \), i.e. \(\beta_j(y_k + u_{t_0} \circ C^{-1}(y)) \neq \beta_j(y'_k + u_{t_0} \circ C^{-1}(y')) \) for some \(j \). Therefore \(y + u_{t_0} \circ C^{-1}(y) \neq y' + u_{t_0} \circ C^{-1}(y') \), i.e. \(\phi_{\gamma} \circ C^{-1}(y) \neq \phi_{\gamma} \circ C^{-1}(y') \).

The following is a direct consequence of Theorems 3 and 6.

Corollary 6.1. Let \(X \) be a c.c.m.a. group and let \(Y \) be a c.c.m.a. \(n \)-dimensional group. Let \(T = a + A \) be an affine transformation of \(X \) and \(S = b + B \) an affine transformation of \(Y \) for which there exists a continuous mapping \(h \) of \(X \) onto \(Y \) satisfying \(hT = Sh \). There exists a nonaffine continuous mapping \(g \) of \(X \) onto \(Y \) such that \(gT = Sg \) if and only if there exists two \(|A| = 1 \), and a root \(\alpha \) of the annihilating polynomial of \(X \) with respect to \(B \) such that \(\alpha^p = \delta \) for some \(p \geq 1 \) and \(\delta(a + A(a) + \cdots + A^{p-1}(a)) = \lambda^p \) for all such \(p \). If \(h \) is a homeomorphism, the above conditions are necessary and sufficient for the existence of a nonaffine homeomorphism \(g \) of \(Y \) such that \(gT = Sg \).

If \(B \) is an endomorphism of a c.c.m.a. \(n \)-dimensional group \(Y \) onto \(Y \) then it follows from the ergodicity conditions stated in §1 that \(B \) is ergodic if and only if no root of the annihilating polynomial of \(\hat{Y} \) with respect to \(B \) is a root of unity. Moreover there is an element \(\gamma \in \hat{Y}, \gamma \neq 1 \) such that \(B^p \gamma = \gamma \) if and only if the annihilating polynomial of \(\hat{Y} \) with respect to \(B \) has a \(p \)-th root of unity as a root.

Theorem 7. Let \(Y \) be a c.c.m.a. \(n \)-dimensional group and let \(A \) and \(B \) be endomorphisms of \(Y \) onto \(Y \). Suppose there exists a continuous mapping \(h \) of \(Y \) onto \(Y \) such that \(hA = Bh \). There exists a nonaffine continuous mapping \(g \) of \(Y \) onto \(Y \) such that \(gA = Bg \) if and only if \(A \) and \(B \) are not ergodic. If \(h \) is given to be a homeomorphism then there exists a nonaffine homeomorphism \(g \) of \(Y \) such that \(gA = Bg \) if and only if \(A \) and \(B \) are not ergodic.
Proof. If there exists a nonaffine continuous mapping g of Y into Y satisfying $gA =Bg$ then Theorem 3 asserts the existence of $\delta \in \hat{Y}$, $\delta \neq 1$, and a root λ of the annihilating polynomial of \hat{Y} with respect to B such that $A^p\delta = \delta$ for some $p \geq 1$ and $\lambda^p = 1$ for all such p. Therefore A and B are not ergodic.

Conversely suppose A and B are not ergodic. Suppose h is affine or there is nothing to prove. Let $h = c + C$, where $c \in Y$ and C is an endomorphism of Y onto Y. If \hat{Y} is considered as an (additive) subgroup of Q^n the nonsingular matrix representing C is a conjugacy between the matrix representing A and the matrix representing B. Hence the annihilating polynomial of \hat{Y} with respect to A is the same as the annihilating polynomial of \hat{Y} with respect to B. Let $\delta \in \hat{Y}$, $\delta \neq 1$, be such that $A^p\delta = \delta$ for some $p \geq 1$. Let p be the least positive integer for which $A^p\delta = \delta$. Then the annihilating polynomial of \hat{Y} with respect to B has a root λ which is a pth root of unity. The result now follows from Theorem 6.

We now give an example to show that Theorem 6 is false if the assumption that \hat{Y} is finite-dimensional is replaced by the assumption that \hat{Y} is polynomially annihilated by B, i.e. the converse of Theorem 3 is false.

Let E denote the automorphism of the 4-torus K^4 determined by the matrix

$$
[E] = \begin{bmatrix}
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 8 \\
0 & 1 & 0 & -6 \\
0 & 0 & 1 & 8
\end{bmatrix}.
$$

The matrix $[E]$ has two eigenvalues λ_1, $\bar{\lambda}_1$ of unit modulus which are not roots of unity and two distinct real eigenvalues λ_2, λ_3 [10]. Let W denote the one-sided direct sum of an infinite number of copies of K^4. Let $Y = K + W$. Y is an infinite-dimensional torus. Let $S = b + B : Y \to Y$ be defined by

$$
S(y_0, y_1, y_2, \ldots) = (b_0, 0, 0, \ldots) + (y_0, Ey_1, y_1 + Ey_2, y_2 + Ey_3, \ldots)
$$

$y_0 \in K$, $y_i \in K^4$ ($i \geq 1$), where $\exp [2\pi ib_0] = \lambda_1$. It is not difficult to show that S is ergodic and \hat{Y} is polynomially annihilated by B. The characteristic polynomial of $[E]$ is the minimal annihilating polynomial with respect to B of some of the elements of \hat{Y} and λ_1 is a root of this polynomial. If $\delta \in \hat{Y}$ is defined by

$$
\delta(y_0, y_1, y_2, \ldots) = \exp [2\pi iy_0],
$$

then $B\delta = \delta$ and $\delta(b) = \lambda_1$. Hence (with $X = Y$ and $T = S$) all the assumptions of Theorem 6 (except that Y be finite-dimensional) are satisfied by this example. However, we shall show that every continuous mapping commuting with S is affine.

Suppose $gS = Sg$ where g is continuous. Let g_n ($n \geq 0$) be the projection of g onto the nth factor in the representation $Y = K + K^4 + K^4 + \cdots$. g_0 is a continuous mapping of Y into K and g_n ($n \geq 1$) are continuous mappings of Y into K^4. We shall show that each g_n ($n \geq 0$) is affine and this implies g is affine. By Theorem 1 there

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
exists a homomorphism $\mu_0: Y \to K$ and a continuous mapping $\phi_0: Y \to R$ such that $g_0(y) = \mu_0(y) + \phi_0(y) + Z$. Since $g_0(Sy) = b_0 + g_0(y)$ we have

$$\phi_0(Sy) = \phi_0(y) + a, \quad y \in Y,$$

where $a \in R$.

Therefore $\phi_0(y) - \int_Y \phi_0(y) \, dm$ (where m denotes Haar measure on Y) is an invariant function under S and therefore constant. Hence ϕ_0 is constant and g_0 is affine. Suppose that some $g_n (n \geq 1)$ is nonaffine. Let k be the least integer for which g_k is nonaffine. By Theorem 1 there exist homomorphisms $\mu_i: Y \to K$ and continuous mappings $\phi_i: Y \to R$ ($1 \leq i \leq 4$) such that

$$g_k(y) = \begin{bmatrix}
\mu_1(y) + \phi_1(y) \\
\mu_2(y) + \phi_2(y) \\
\mu_3(y) + \phi_3(y) \\
\mu_4(y) + \phi_4(y)
\end{bmatrix} + Z.$$

Since $gS = Sg$ we have $g_kS = g_{k-1} + Eg_k$ and $g_{k+1}S = g_k + Eg_{k+1}$. Since g_{k-1} is affine the uniqueness in Theorem 1 gives

$$g_k(y) = \begin{bmatrix}
\mu_1(y) + \phi_1(y) \\
\mu_2(y) + \phi_2(y) \\
\mu_3(y) + \phi_3(y) \\
\mu_4(y) + \phi_4(y)
\end{bmatrix} + Z.$$

Let D, with matrix

$$[D] = \begin{bmatrix}
\lambda_1 & 0 & 0 & 0 \\
0 & \lambda_1 & 0 & 0 \\
0 & 0 & \lambda_2 & 0 \\
0 & 0 & 0 & \lambda_3
\end{bmatrix}$$

be the Jordan normal form of E and let $U: C^4 \to C^4$ be the linear transformation such that $U^{-1}EU = D$. By the type of argument used in the proof of Theorem 3 it follows that

$$\begin{bmatrix}
\phi_1(y) \\
\phi_2(y) \\
\phi_3(y) \\
\phi_4(y)
\end{bmatrix} = U \begin{bmatrix}
c\delta(y) \\
d\delta^{-1}(y) \\
0 \\
0
\end{bmatrix} + e', \quad y \in Y,$$

where $c, d \in C$ and $e' \in R^4$. By Theorem 1 again

$$g_{k+1}(y) = \begin{bmatrix}
\mu_6(y) + \phi_6(y) \\
\mu_8(y) + \phi_8(y) \\
\mu_7(y) + \phi_7(y) \\
\mu_0(y) + \phi_0(y)
\end{bmatrix}, \quad y \in Y,$$
where \(\mu_i : Y \to K \) are homomorphisms and \(\phi_i : Y \to R \) are continuous (5 \(\leq i \leq 8 \)).
Since \(g_{k+1}(Sy) = g_k(y) + Eg_{k+1}(y) \) we have
\[
\begin{bmatrix}
\phi_2(Sy) \\
\phi_0(Sy) \\
\phi_7(Sy) \\
\phi_9(Sy)
\end{bmatrix} = E
\begin{bmatrix}
\phi_2(y) \\
\phi_0(y) \\
\phi_7(y) \\
\phi_9(y)
\end{bmatrix} + U
\begin{bmatrix}
e \delta(y) \\
d \delta(y)^{-1}(y) \\
0 \\
0
\end{bmatrix} + e^u, \quad y \in Y,
\]
where \(e^u \in R^4 \). Apply \(U^{-1} \) to this equation and set
\[
\begin{bmatrix}
f_1(y) \\
f_2(y) \\
f_3(y) \\
f_4(y)
\end{bmatrix} = U^{-1}
\begin{bmatrix}
\phi_2(y) \\
\phi_0(y) \\
\phi_7(y) \\
\phi_9(y)
\end{bmatrix}.
\]
Then \(f_1(Sy) = \lambda_1 f_1(y) + c \delta(y) + c^1 \), where \(c^1 \in C \). Since \(f_2 \in L^2(Y) \) let \(f_2(y) = \sum a_i \gamma_i(y) \) (L^2 convergence) where \(\gamma_i \in \hat{Y} \) and \(\sum |a_i|^2 < \infty \). If \(\delta = \gamma_{i_0} \) then \(a_{i_0} \delta(b) = \lambda_1 a_{i_0} + c \), and since \(\delta(b) = \lambda_1 \) this gives \(c = 0 \). Consideration of the equation for \(f_2 \) implies \(d = 0 \). Therefore \(\phi_i \), \(1 \leq i \leq 8 \), are constant and \(g_k \) is affine, a contradiction.
Therefore each \(g_n \) (\(n \geq 0 \)) is affine.

Thus we have shown that every continuous mapping commuting with \(S \) is affine.

We shall now state, without proof, a generalization of Theorem 6. If \(B \) is an endomorphism of a c.c.m.a. group \(Y \) we denote by \(\gamma(B, A) \) the subgroup of \(\gamma \) generated by those elements of \(\gamma \) whose minimal annihilating polynomials with respect to \(B \) have \(\lambda \) as a root.

Theorem 8. Suppose \(X \) and \(Y \) are c.c.m.a. groups, \(T = a + A \) an affine transformation of \(X \), and \(S = b + B \) an affine transformation of \(Y \) such that \(\hat{Y} \) is polynomially annihilated by \(B \). Suppose there exists a continuous mapping \(h \) of \(X \) onto \(Y \) such that \(hT = Sh \). Also assume there exists \(\delta \in \hat{X} \), \(\delta \neq 1 \), and a complex number \(\lambda \) with \(|\lambda| = 1 \), such that \(\hat{Y}(B, \lambda) \) is a subgroup of \(\hat{Y} \) of finite rank with the properties that \(A^p \delta = \delta \) for some \(p \geq 1 \) and \(\delta(a + A(a) + \cdots + A^{p-1}(a)) = \lambda^p \) for all such \(p \). Then there exists a nonaffine continuous mapping \(g \) of \(X \) onto \(Y \) such that \(gT = Sg \). If \(h \) is a homeomorphism then \(g \) can be chosen to be a homeomorphism.

References

The University of California,
Berkeley, California