Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ n$-aposyndetic continua and cutting theorems


Author: Eldon Jon Vought
Journal: Trans. Amer. Math. Soc. 140 (1969), 127-135
MSC: Primary 54.55
DOI: https://doi.org/10.1090/S0002-9947-1969-0242128-2
MathSciNet review: 0242128
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] W. L. Ayres and G. T. Whyburn, On continuous curves in n-dimensions, Bull. Amer. Math. Soc. 34 (1928), 349-360. MR 1561562
  • [2] E. E. Grace, Cut sets in totally nonaposyndetic continua, Proc. Amer. Math. Soc. 9 (1958), 98-104. MR 0095458 (20:1960)
  • [3] F. B. Jones, Aposyndetic continua and certain boundary problems, Amer. J. Math. 63 (1941), 545-553. MR 0004771 (3:59e)
  • [4] -, Concerning non-aposyndetic continua, Amer. J. Math. 70 (1948), 403-413. MR 0025161 (9:606h)
  • [5] R. L. Moore, A characterization of a continuous curve, Fund. Math. 7 (1925), 302-307.
  • [6] -, Foundations of point set theory, Amer. Math. Soc. Colloq. Publ., Vol. 13, Amer. Math. Soc., Providence, R. I., 1932.
  • [7] E. J. Vought, Stronger forms of aposyndetic continua, Doctoral Dissertation, University of California, Riverside, 1967.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.55

Retrieve articles in all journals with MSC: 54.55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1969-0242128-2
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society