ABSOLUTE GAP-SHEAVES AND EXTENSIONS OF
COHERENT ANALYTIC SHEAVES

BY

YUM-TONG SIU

Thimm introduced the concept of gap-sheaves for analytic subsheaves of finite
direct sums of structure-sheaves on domains of complex number spaces (Definition
9, [13]) and proved that these gap-sheaves are coherent if the subsheaves themselves
are coherent (Satz 3, [13]). This concept of gap-sheaves can be readily generalized
to analytic subsheaves of arbitrary analytic sheaves on general complex spaces
(Definition 1, [12]). All the gap-sheaves of coherent analytic subsheaves of arbitrary
coherent analytic sheaves on general complex spaces are coherent (Theorem 3, [12]).
The gap-sheaves of a given analytic subsheaf depend not only on the subsheaf
itself but also on the analytic sheaf in which the given subsheaf is embedded as a
subsheaf.

In this paper we introduce a new notion of gap-sheaves which we call absolute
gap-sheaves (Definition 3 below). These gap-sheaves arise naturally from the
problem of removing singularities of local sections of a coherent analytic sheaf.
They depend only on a given analytic sheaf and neither require nor depend upon an
embedding of the given sheaf as a subsheaf in another analytic sheaf. We give here a
necessary and sufficient condition for the coherence of absolute gap-sheaves of
coherent sheaves (Theorem 1 below). This yields some results concerning removing
singularities of local sections of coherent sheaves (see Remark following Corollary 2
to Theorem 1). Then we use absolute gap-sheaves to derive a theorem (Theorem 2
below) which generalizes Serre’s Theorem on the extension of torsion-free coherent
analytic sheaves (Theorem 1, [11]). Finally a result on extensions of global sections
of coherent analytic sheaves is derived (Theorem 4 below).

Unless specified otherwise, complex spaces are in the sense of Grauert (§1, [5]).
If \(\mathcal{F} \) is an analytic subsheaf of an analytic sheaf \(\mathcal{I} \) on a complex space \((X, \mathcal{H}) \),
then \(\mathcal{F} : \mathcal{I} \) denotes the ideal-sheaf \(\mathcal{I} \) defined by \(\mathcal{I}_x = \{ s \in \mathcal{H}_x \mid s \mathcal{I}_x \subset \mathcal{I}_x \} \) for
\(x \in X \). \(E(\mathcal{F}, \mathcal{I}) \) denotes \(\{ x \in X \mid \mathcal{I}_x \neq \mathcal{I}_x \}. \) \(\text{Supp} \ \mathcal{F} \) denotes the support of \(\mathcal{F} \). If
\(t \in \Gamma(X, \mathcal{I}) \), then \(\text{Supp} \ t \) denotes the support of \(t \). For \(x \in X \), \(t_x \) denotes the germ
of \(t \) at \(x \). By the annihilator-ideal-sheaf \(\mathcal{A} \) of \(\mathcal{F} \) we mean the ideal-sheaf \(\mathcal{A} \) defined
by \(\mathcal{A}_x = \{ s \in \mathcal{H}_x \mid s \mathcal{F}_x = 0 \} \) for \(x \in X \). If \(\theta : (X, \mathcal{H}) \rightarrow (X', \mathcal{H}') \) is a holomorphic map
(i.e., a morphism of ringed spaces) from \((X, \mathcal{H}) \) to another complex space \((X', \mathcal{H}') \),
then \(R^0 \theta(\mathcal{F}) \) denotes the zeroth direct image of \(\mathcal{F} \) under \(\theta \). If \(f \in \Gamma(X, \mathcal{H}) \) and
\(x \in X \), we say that \(f \) vanished at \(x \) if \(f_x \) is not a unit in \(\mathcal{H}_x \).

Received by the editors March 25, 1968.
I. Absolute gap-sheaves.

Definition 1. Suppose \(\mathcal{F} \) is an analytic subsheaf of an analytic sheaf \(\mathcal{G} \) on a complex space \((X, \mathcal{O}_X)\) and \(\rho \) is a nonnegative integer. The \(\rho \)-th gap-sheaf of \(\mathcal{F} \) in \(\mathcal{G} \), denoted by \(\mathcal{G}^{(\rho)}\mathcal{F} \), is the analytic subsheaf of \(\mathcal{G} \) defined as follows: For \(x \in X \), \(s \in (\mathcal{G}^{(\rho)}\mathcal{F})_x \) if and only if there exist an open neighborhood \(U \) of \(x \) in \(X \), a subvariety \(A \) in \(U \) of dimension \(\leq \rho \), and \(t \in \Gamma(U, \mathcal{G}) \) such that \(t_x = s \) and \(t_y \in \mathcal{G}_y \) for \(y \in U - A \).

Denote the set \(\{x \in X \mid \mathcal{F}_x \neq (\mathcal{G}^{(\rho)}\mathcal{F})_x\} \) by \(E\rho^p(\mathcal{F}, \mathcal{G}) \).

Remark. When \(\mathcal{G} \) and \(\mathcal{F} \) are both coherent, then \(x \in E\rho^p(\mathcal{F}, \mathcal{G}) \) if and only if \(\mathcal{G}_x \) as an \(\mathcal{O}_x \)-submodule of \(\mathcal{F}_x \) has an associated prime ideal of dimension \(\leq \rho \) (Theorem 4, [12]). \(E\rho^p(\mathcal{F}, \mathcal{G}) = \emptyset \) means that for every \(x \in X \), \(\mathcal{G}_x \) as an \(\mathcal{O}_x \)-submodule of \(\mathcal{F}_x \) has no associated prime ideal of dimension \(\leq \rho \).

Definition 2. Suppose \(\mathcal{F} \) is an analytic subsheaf of an analytic sheaf \(\mathcal{G} \) on a complex space \((X, \mathcal{O}_X)\) and \(A \) is a subvariety of \(X \). Then the gap-sheaf of \(\mathcal{F} \) in \(\mathcal{G} \) with respect to \(A \), denoted by \(\mathcal{G}[A]\mathcal{F} \), is defined as follows: For \(x \in X \), \(s \in (\mathcal{G}[A]\mathcal{F})_x \) if and only if there exist an open neighborhood \(U \) of \(x \) in \(X \) and \(t \in \Gamma(U, \mathcal{G}) \) such that \(t_x = s \) and \(t_y \in \mathcal{G}_y \) for \(y \in U - A \).

Proposition 1. Suppose \(\mathcal{F} \) is a coherent analytic subsheaf of a coherent analytic sheaf \(\mathcal{G} \) on a complex space \((X, \mathcal{O}_X)\) and \(\rho \) is a nonnegative integer. Then \(\mathcal{G}^{(\rho)}\mathcal{F} \) is coherent and \(E\rho^p(\mathcal{F}, \mathcal{G}) \) is a subvariety of dimension \(\leq \rho \) in \(X \).

Proof. See Theorem 3 [12]. This can also be derived easily from Satz 3 [13]. Q.E.D.

Proposition 2. Suppose \(\mathcal{F} \) is a coherent analytic subsheaf of a coherent analytic sheaf \(\mathcal{G} \) on a complex space \((X, \mathcal{O}_X)\) and \(A \) is a subvariety of \(X \). Then \(\mathcal{G}[A]\mathcal{F} \) is coherent.

Proof. See Theorem 1 [12]. This can also be derived easily from [13, Satz 9]. Q.E.D.

Definition 3. Suppose \(\mathcal{G} \) is an analytic sheaf on a complex space \(X \) and \(\rho \) is a nonnegative integer. The \(\rho \)-th absolute gap-sheaf of \(\mathcal{G} \), denoted by \(\mathcal{G}^{(\rho)} \), is the analytic sheaf on \(X \) defined by the following presheaf: Suppose \(U \subset V \) are open subsets of \(X \). Then

\[
\mathcal{G}^{(\rho)}(U) = \lim\limits_{\text{ind}} \lim\limits_{\text{dir}} \Gamma(U - A, \mathcal{G}),
\]

where \(\mathcal{A}(U) \) is the directed set of all analytic subvarieties in \(U \) of dimension \(\leq \rho \) directed under inclusion. \(\mathcal{G}^{(\rho)}(V) \to \mathcal{G}^{(\rho)}(U) \) is induced by restriction.

Remarks. (i) \(\mathcal{G}^{(\rho)} = (\mathcal{G}^{(0)}\mathcal{G})^{(\rho)} \), where 0 is the zero-subsheaf of \(\mathcal{G} \).

(ii) There is a natural sheaf-homomorphism \(\mu: \mathcal{G} \to \mathcal{G}^{(\rho)} \). The kernel of \(\mu \) is \(\mathcal{G}^{(0)}\mathcal{G} \). When \(E\rho^p(0, \mathcal{G}) = \emptyset \), \(\mu \) is injective and we can regard \(\mathcal{G} \) as a subsheaf of \(\mathcal{G}^{(\rho)} \). In this case we denote the set \(\{x \in X \mid \mathcal{G}_x \neq (\mathcal{G}^{(\rho)})_x\} \) by \(E\rho^p(\mathcal{G}) \).
Lemma 1. Suppose \(F \) is a coherent analytic sheaf on a reduced complex space \((X, \mathcal{O})\) of pure dimension \(n \). Suppose \(0 \leq \rho \leq n - 2 \). If \(E^{n-1}(0, F) = \mathcal{O} \), then \(\mathcal{F}^{[\rho]} \) is coherent and \(E^\rho(F) \) is a subvariety of dimension \(\leq \rho \).

Proof. Let \(\pi: (\bar{X}, \bar{\mathcal{O}}) \to (X, \mathcal{O}) \) be the normalization of \((X, \mathcal{O})\). Let \(\mathcal{F} \) be the inverse image of \(F \) under \(\pi \) (Definition 8, [6]). Let \(\mathcal{F}^e \) be the torsion-subsheaf of \(\mathcal{F} \) and \(\mathcal{G} = \mathcal{F}^e / \mathcal{F} \). Let \(Y = \text{Supp} \ F \). \(\mathcal{F} \) and \(\mathcal{G} \) are both coherent and \(\mathcal{G} \) is torsion-free (Proposition 6, [1]). \(\dim Y \leq n - 1 \) (Proposition 7, [1]). We claim that

\[\mathcal{G}^{[\rho]} \text{ is coherent and } E^\rho(\mathcal{G}) \text{ is a subvariety of dimension } \leq \rho \text{ in } \bar{X}. \]

Take \(x \in \bar{X} \). On some open neighborhood \(U \) of \(x \) in \(\bar{X} \) \(\mathcal{G} \) can be regarded as a coherent subsheaf of \(\mathcal{O}^{[\rho]} \) for some \(\rho \) (Proposition 9, [1]). It is clear that \(\mathcal{G}^{[\rho]} \) is isomorphic to \(\mathcal{G}^{[\rho]}_{\eta, \mathcal{O}} \) on \(U \) and \(E^\rho(\mathcal{G}, \mathcal{O}^{[\rho]}) \cap U = E^\rho(\mathcal{G}) \cap U \). (1) follows from Proposition 1.

Let \(\mathcal{F}^* = R^0\pi(\mathcal{F}) \), \(\mathcal{G}^* = R^0\pi(\mathcal{G}) \), and \((\mathcal{G}^{[\rho]})^* = R^0\pi(\mathcal{G}^{[\rho]}) \). Let \(\alpha: \mathcal{F}^* \to \mathcal{G}^* \) and \(\beta: \mathcal{F}^* \to (\mathcal{G}^{[\rho]})^* \) be induced respectively by the quotient map \(\mathcal{F} \to \mathcal{G} \) and the inclusion map \(\mathcal{G} \to \mathcal{G}^{[\rho]} \). We have a natural sheaf-homomorphism \(\lambda: \mathcal{F} \to \mathcal{F}^* \) (Satz 7(b), [6]). Let \(Z \) be the set of all singular points of \(X \). Let \(\mathcal{H} \) be the kernel of \(\alpha \lambda \). Then \(\text{Supp } \mathcal{H} \subseteq Z \cup \pi(Y) \). Since \(E^{n-1}(0, F) = \mathcal{O} \) and \(\dim \text{Supp } \mathcal{H} \leq n - 1 \), \(\mathcal{H} = 0 \). \(\gamma = \beta \alpha \lambda: \mathcal{F} \to (\mathcal{G}^{[\rho]})^* \) is injective. It is easily seen that \(((\mathcal{G}^{[\rho]})^*)_{[\rho]} = (\mathcal{G}^{[\rho]})^* \). \(\gamma \) induces a sheaf-monomorphism \(\gamma_1: \mathcal{F}^{[\rho]} \to (\mathcal{G}^{[\rho]})^* \). \(\mathcal{F}^{[\rho]} \approx \mathcal{F}^{[\rho]}_{[\rho]} = \gamma(\mathcal{F})_{[\rho]}(\mathcal{G}^{[\rho]})_1 \), and \(E^\rho(\mathcal{F}) = E^\rho(\gamma(\mathcal{F}), (\mathcal{G}^{[\rho]})^*) \). Since by Proposition 1 \(\gamma(\mathcal{F})_{[\rho]}(\mathcal{G}^{[\rho]})_1 \) is coherent and \(E^\rho(\gamma(\mathcal{F}), (\mathcal{G}^{[\rho]})^*) \) is a subvariety of dimension \(\leq \rho \) in \(X \), the Lemma follows. Q.E.D.

Lemma 2. Suppose \(F \) is a coherent analytic sheaf on a complex space \((X, \mathcal{H})\). Suppose \(x \in X \) and \(f \in \mathcal{H}_x \) such that for every nonnegative integer \(\rho \) either \(x \notin E^\rho(0, F) \) or \(f \) does not vanish identically on any branch-germ of \(E^\rho(0, F) \) at \(x \). Then \(f \) is not a zero-divisor for \(\mathcal{H}_x \).

Proof. Suppose the contrary. Then there exist \(s \in \Gamma(U, F) \) and \(g \in \Gamma(U, \mathcal{H}) \) for some open neighborhood \(U \) of \(x \) such that \(g_x = f \), \(g_s = 0 \), and \(s_x \neq 0 \). Let \(Z = \text{Supp } s \) and \(\dim Z_x = \rho \). By shrinking \(U \), we can assume that \(\dim Z = \rho \). Hence \(Z \subseteq E^\rho(0, F) \). Since \(\dim E^\rho(0, F) \leq \rho \), the union \(Z_0 \) of all \(\rho \)-dimensional branches of \(Z \) is equal to the union of some \(\rho \)-dimensional branches of \(E^\rho(0, F) \cap U \). By assumption \(g \) does not vanish identically on \(Z_0 \). For some \(y \in Z_0 \), \(g_y \) is a unit in \(\mathcal{H}_y \), \(s_y = 0 \), contradicting that \(Z = \text{Supp } s \). Q.E.D.

Lemma 3. Suppose \(F \) is a coherent analytic sheaf on a complex space \(X \) and \(\rho \) is a nonnegative integer. If \(E^\rho(0, F) = \mathcal{O} \), then for any nonnegative integer \(\sigma \) either \(E^\rho(0, F) = \mathcal{O} \) or every branch of \(E^\rho(0, F) \) has dimension \(> \rho \).

Proof. Suppose \(Y \) is a nonempty \(m \)-dimensional branch of \(E^\rho(0, F) \) for some nonnegative integer \(m \) such that \(m \leq \rho \). Take a Stein open subset \(U \) of \(X \) such that \(U \cap E^\rho(0, F) = U \cap Y \neq \emptyset \). Take \(x \in U \cap Y \). Since \((0_{[\sigma]}\mathcal{F})_x \neq 0 \), there exists
Let \(s \in \Gamma(U, 0_{(3)}) \) such that \(s_x \neq 0 \). Supp \(s \subseteq E^0(0, \mathcal{F}) \cap U = U \cap Y \). dim Supp \(s \leq \rho \). Hence \(s \in \Gamma(U, 0_{(3)}) \). \(x \in E^0(0, \mathcal{F}) \), contradicting that \(E^0(0, \mathcal{F}) = \emptyset \). Q.E.D.

Lemma 4. Suppose \(\mathcal{F}_i, 1 \leq i \leq 3 \), are coherent analytic sheaves on a complex space \((X, \mathcal{H}) \) and \(\rho \) is a nonnegative integer such that \(E^0(0, \mathcal{F}_i) = 0 \) for \(1 \leq i \leq 3 \). Suppose \(0 \rightarrow \mathcal{F}_1 \rightarrow \mathcal{F}_2 \rightarrow \mathcal{F}_3 \rightarrow 0 \) is an exact sequence of sheaf-homomorphisms. If \((\mathcal{F}_1)^{[\rho]} \) is coherent and \(E^0(\mathcal{F}_1) \) is a subvariety of dimension \(\leq \rho \) for \(i = 1, 3 \), then \((\mathcal{F}_2)^{[\rho]} \) is coherent and \(E^0(\mathcal{F}_2) \) is a subvariety of dimension \(\leq \rho \).

Proof. Let \(X_i = E^0(\mathcal{F}_i), i = 1, 3 \). The problem is local in nature. Take \(x_0 \in X \) and take an open Stein neighborhood \(U \) of \(x_0 \) in \(X \). \(\mathcal{F}_i \) is a coherent analytic subsheaf of \((\mathcal{F}_i)^{[\rho]} \), \(i = 1, 3 \). Let \(\mathcal{A}_i = (\mathcal{F}_i)^{[\rho]} \), \(i = 1, 3 \). \(E(\mathcal{A}_i, \mathcal{H}) = X_i \), \(i = 1, 3 \). Let \(\mathcal{F}_i \) be the ideal-sheaf for \(X_i \), \(i = 1, 3 \). By Hilbert Nullstellensatz, after shrinking \(U \), we can find a natural number \(m \) such that \(\mathcal{A}_i^{[m]} \subseteq \mathcal{A}_i \) on \(U \). \(i = 1, 3 \). By Lemma 3 for any nonnegative integer \(\sigma \) every nonempty branch of \(E^0(0, \mathcal{F}_2) \) has dimension \(> \rho \). Since \(\dim X_i \leq \rho \), \(i = 1, 3 \), we can choose \(f \in \Gamma(U, \mathcal{F}_1^{[\sigma]} \cap \mathcal{F}_3^{[\sigma]}) \) such that \(f \neq 0 \) does not vanish identically on any nonempty branch-germ of \(E^0(0, \mathcal{F}_2) \) at \(x_0 \) for any nonnegative integer \(\sigma \). By Lemma 2 \(f_{x_0} \) is not a zero-divisor for \((\mathcal{F}_2)^{[\rho]} \). Let \(\mathcal{H} \) be the kernel of the sheaf-homomorphism \(\alpha : \mathcal{F}_2 \rightarrow \mathcal{F}_2 \) on \(U \) defined by multiplication by \(f \). Then \(\mathcal{H}_{x_0} = 0 \). By shrinking \(U \), we can assume that \(\mathcal{H} = 0 \) on \(U \). \(\alpha \) induces a sheaf-monomorphism \(\beta : (\mathcal{F}_2)^{[\rho]} \rightarrow (\mathcal{F}_2)^{[\rho]} \). Let \(\gamma = \beta \circ \alpha \). We claim that \(\gamma((\mathcal{F}_2)^{[\rho]}) \subseteq \mathcal{F}_2 \) is \(U \). Take \(s \in ((\mathcal{F}_2)^{[\rho]})_x \) for some \(x \in U \). \(s \) is defined by some \(t \in \Gamma(W - A, \mathcal{F}_3) \), where \(W \) is an open neighborhood of \(x \) in \(U \) and \(A \) is a subvariety of dimension \(\leq \rho \) in \(W \). \(\gamma(t) \in \Gamma(W - A, \mathcal{F}_3) \) defines an element \(a \) of \(((\mathcal{F}_3)^{[\sigma]})_x \). \(f_s a \in ((\mathcal{F}_3)^{[\sigma]})_x \). By shrinking \(W \) we can find \(u \in \Gamma(W, \mathcal{F}_3) \) such that \(u \) agrees with \(f_s \) on \(W - A \) and we can find \(v \in \Gamma(W, \mathcal{F}_2) \) such that \(v = u \). \(v - f_s \) defines an element \(b \) of \(((\mathcal{F}_2)^{[\rho]})_x \). \(f_s b \in ((\mathcal{F}_2)^{[\rho]})_x \). By shrinking \(W \) we can find \(w \in \Gamma(W, \mathcal{F}_2) \) such that \(w \) agrees with \(f(v - f_s) \) on \(W - A \). \(f(v - f_s) - w \in ((\mathcal{F}_2)^{[\rho]})_x \). Hence \(\gamma((\mathcal{F}_2)^{[\rho]}) \subseteq \mathcal{F}_2 \). It is easily seen that \(\gamma((\mathcal{F}_2)^{[\rho]}) = \gamma((\mathcal{F}_2)^{[\rho]} \cap U) \). \(U = E^0(\mathcal{F}_2) \cap U = E^0((\gamma(\mathcal{F}_2)^{[\rho]} \cap U). \) Q.E.D.

Lemma 5. Suppose \(\mathcal{F} \) is a coherent analytic sheaf on a complex space \((X, \mathcal{H}) \) of pure dimension \(n \) and \(0 \leq \rho \leq n - 2 \). If \(E^{n-1}(0, \mathcal{F}) = \emptyset \), then \((\mathcal{F})^{[\rho]} \) is coherent and \(E^0(\mathcal{F}) \) is a subvariety of dimension \(\leq \rho \).

Proof. Let \(\mathcal{N} \) be the subsheaf of all nilpotent elements of \(\mathcal{H} \) and \(\mathcal{O} = \mathcal{H} \mid \mathcal{N} \). Since the lemma is local in nature, we can suppose that for some nonnegative integer \(k \) \(\mathcal{N}^k = 0 \). For \(0 \leq l \leq k \) define \((\mathcal{F})^{(l)} \) inductively as follows: \((\mathcal{F})^{(0)} = \mathcal{F} \) and, for \(1 \leq l \leq k \), \((\mathcal{F})^{(l)} = (\mathcal{N} \mathcal{F}^{(l-1)})^{(l-1)} \). Let \(Y = \bigcup_{l=1}^k E^{n-1}(\mathcal{N} \mathcal{F}^{(l-1)}, \mathcal{F}^{(l-1)}) \). \(Y \) is a subvariety of dimension \(\leq n - 1 \). On \(X - Y \) \((\mathcal{F})^{(l)} = (\mathcal{F})^{(l)} \) for \(1 \leq l \leq k \). Hence \((\mathcal{F})^{(0)} = 0 \) on \(X - Y \). Since \((\mathcal{F})^{(k)} \subseteq \mathcal{F} \) and \(E^{n-1}(0, \mathcal{F}) = \emptyset \). \((\mathcal{F})^{(k)} = 0 \). From the definition of \((\mathcal{F})^{(l)} \) we see that \(E^{n-1}(\mathcal{F})^{(l)}, \mathcal{F}^{(l)} = \emptyset \) for \(1 \leq l \leq k \). Hence \(E^{n-1}(0, \mathcal{F}^{(l)}) = \emptyset \). \((\mathcal{F})^{(l)} = \emptyset \) for \(1 \leq l \leq k \). \(E^{n-1}(0, \mathcal{F}) = \emptyset \) implies that \(E^{n-1}(0, \mathcal{F}^{(l)}) = \emptyset \) for \(0 \leq l \leq k \). Since \((\mathcal{F}^{(l)}) \subseteq (\mathcal{F})^{(l)} \), \((\mathcal{F})^{(l)} \) can be regarded as a coherent analytic sheaf on \((X, \mathcal{O}) \).
1 \leq l \leq k. By Lemma 1 \((\mathcal{F}^{(l-1)}/\mathcal{F}^{(l)})^{(l)} \) is coherent and \(E^l(\mathcal{F}^{(l-1)}/\mathcal{F}^{(l)}) \) is a subvariety of dimension \(\leq \rho \). Since \(\mathcal{F}^{(k)} = 0 \), from Lemma 4 and the exact sequences

\[0 \rightarrow \mathcal{F}^{(l)} \rightarrow \mathcal{F}^{(l-1)} \rightarrow \mathcal{F}^{(l-1)}/\mathcal{F}^{(l)} \rightarrow 0, \ 1 \leq l \leq k \]

we conclude by backward induction on \(l \) that \((\mathcal{F}^{(l)})^{(l)} \) is coherent and \(E^l(\mathcal{F}^{(l)}) \) is a subvariety of dimension \(\leq \rho \) for \(0 \leq l \leq k \). The Lemma follows from \(\mathcal{F} = \mathcal{F}^{(l)} \). Q.E.D.

Lemma 6. Suppose \(\mathcal{F} \) is a coherent analytic sheaf on a complex space \((X, \mathcal{H})\) and \(\rho \) is a nonnegative integer. Let \(Y \) be the union of \((\rho + 1)\)-dimensional branches of \(E^{\rho+1}(0, \mathcal{F}) \). Then for \(x \in Y \) \((\mathcal{F}^{(l)})_x \) is not finitely generated over \(\mathcal{H}_x \).

Proof. We can assume that \(Y \neq \emptyset \). Let \(\mathcal{I} = \mathcal{F}/0_{(l)}\mathcal{F} \). Since \(E^0(0, \mathcal{I}) = \emptyset \), by Lemma 3 and Proposition 1 every branch of \(E^{\rho+1}(0, \mathcal{I}) \) is \((\rho+1)\)-dimensional. Since \(\mathcal{I} \) agrees with \(\mathcal{F} \) on \(X - E^0(0, \mathcal{F}) \), \(E^{\rho+1}(0, \mathcal{I}) - E^0(0, \mathcal{F}) = E^{\rho+1}(0, \mathcal{F}) - E^0(0, \mathcal{F}) \). Dim \(E^0(0, \mathcal{F}) \leq \rho \) implies that \(E^{\rho+1}(0, \mathcal{F}) = Y \).

Fix \(x \in Y \). Suppose \((\mathcal{F}^{(l)})_x \) is finitely generated over \(\mathcal{H}_x \). Let \(\mathcal{I} = 0_{(l+1)}\mathcal{F} \). Since \(E^0(0, \mathcal{I}) \subset E^0(0, \mathcal{F}) = \emptyset \), \(\mathcal{I} \subset \mathcal{I}^{(l)} \subset \mathcal{I}^{(l)} = \mathcal{F}^{(l)} \). Since \(\text{Supp } \mathcal{I} = E^{\rho+1}(0, \mathcal{F}) \), \((\mathcal{F}^{(l)})_x \) is a nonzero finitely generated \(\mathcal{H}_x \)-module. Let \((\mathcal{F}^{(l)})_x \) be generated by \(s_1, \ldots, s_n \in (\mathcal{F}^{(l)})_x \). For some open neighborhood \(U \) of \(x \) in \(X \) and for some subvariety \(A \) of dimension \(\leq \rho \) in \(U \), \(s_i \) is induced by \(t_i \in \Gamma(U - A, \mathcal{F}) \), \(1 \leq i \leq m \). By shrinking \(U \), we can choose \(f \in \Gamma(U, \mathcal{F}) \) such that \(W = Z(f) \cap Y \) is a subvariety of dimension \(\rho \) in \(U \) and \(x \in Z(f) \), where \(Z(f) = \{ y \in U | f_y \neq 0 \} \) is not a unit in \(\mathcal{H}_y \). There exists a unique \(g \in \Gamma(U - Z(f), \mathcal{H}) \) such that \(gf = 1 \) on \(U - Z(f) \). For \(1 \leq i \leq m \) define \(u_i \in \Gamma(U - (A \cup W), \mathcal{F}) \) by \((u_i)_y = 0 \) for \(y \in U - Y \) and \((u_i)_y = (g)_y \) for \(y \in Y \cap (U - (A \cup W)) \). \(u_i \) induces \(v_i \in (\mathcal{F}^{(l)})_x \), \(1 \leq i \leq m \). \(f_i v_i = s_i \), \(1 \leq i \leq m \). For some \(a_{ij} \in \mathcal{H}_x \), \(v_i = \sum_{j=1}^m a_{ij} s_j \), \(1 \leq i \leq m \). \(s_i = f_i v_i = \sum_{j=1}^m a_{ij} s_j \), \(1 \leq i \leq m \). \((\mathcal{F}^{(l)})_x \) is a nonzero \(\mathcal{H}_x \)-module. Since \(f_x \) is not a unit in \(\mathcal{H}_x \), by [8, (4.1)] we have \((\mathcal{F}^{(l)})_x = 0 \) (contradiction). Q.E.D.

Theorem 1. Suppose \(\mathcal{F} \) is a coherent analytic sheaf on a complex space \((X, \mathcal{H})\) and \(\rho \) is a nonnegative integer. Then \(\mathcal{F}^{(l)} \) is coherent if and only if \(\text{dim } E^{\rho+1}(0, \mathcal{F}) < \rho + 1 \). In that case \(E^0(\mathcal{F}/0_{(l)}\mathcal{F}) \) is a subvariety of dimension \(\leq \rho \).

Proof. It follows from Lemma 6 that, if \(\mathcal{F}^{(l)} \) is coherent, then \(\text{dim } E^{\rho+1}(0, \mathcal{F}) < \rho + 1 \). We are going to prove that \(\mathcal{F}^{(l)} \) is coherent and \(E^0(\mathcal{F}/0_{(l)}\mathcal{F}) \) is a subvariety of dimension \(\leq \rho \) in \(X \). Since \(\mathcal{F} \) agrees with \(\mathcal{F}/0_{(l)}\mathcal{F} \) on \(X - E^0(0, \mathcal{F}) \), \(E^{\rho+1}(0, \mathcal{F}/0_{(l)}\mathcal{F}) \) is contained in the subvariety \(E^0(0, \mathcal{F}) \cup E^{\rho+1}(0, \mathcal{F}) \) of dimension \(\leq \rho \). \(E^0(0, \mathcal{F}/0_{(l)}\mathcal{F}) = \emptyset \) implies \(E^{\rho+1}(0, \mathcal{F}/0_{(l)}\mathcal{F}) = \emptyset \) by Lemma 3. Since \(\mathcal{F}^{(l)} = (\mathcal{F}/0_{(l)}\mathcal{F})^{(l)} \), by replacing \(\mathcal{F} \) by \(\mathcal{F}/0_{(l)}\mathcal{F} \), we can assume that \(E^{\rho+1}(0, \mathcal{F}) = \emptyset \). Since the problem is local in nature, we can suppose that \(X \) is of finite dimension \(n \). If \(n < \rho + 2 \), \(E^{\rho+1}(0, \mathcal{F}) = \emptyset \) implies that \(\mathcal{F} = 0 \), \(\mathcal{F}^{(l)} = 0 \) is coherent and \(E^l(\mathcal{F}) = \emptyset \). So we can assume that \(n \geq \rho + 2 \). For \(\rho + 1 \leq m \leq n \) let \(\mathcal{G}^{(m)} = 0_{(m)}\mathcal{F} \). \(\mathcal{G}^{(m+1)} = 0 \), because \(E^{\rho+1}(0, \mathcal{F}) = \emptyset \). For \(\rho + 2 \leq m \leq n \) let \(X_m = \text{Supp } (\mathcal{G}^{(m)})/\mathcal{G}^{(m-1)} \). \(X_m \) is the union of all \(m \)-dimensional branches of \(E^m(0, \mathcal{F}) \),
\(\rho + 2 \leq m \leq n \). Let \(E^{m-1}(0, \mathcal{O}(m)/\mathcal{O}(m-1)) = \mathcal{O} \) for \(\rho + 2 \leq m \leq n \). For \(\rho + 2 \leq m \leq n \) let \(\mathcal{A}(m) \) be the annihilator-ideal-sheaf for \(\mathcal{O}(m)/\mathcal{O}(m-1) \). Then \((\mathcal{O}(m)/\mathcal{O}(m-1)) | X_m \) can be regarded as a coherent analytic sheaf on the complex space \((X_m, (\mathcal{A}/\mathcal{A}(m)) | X_m) \) which is either empty or of pure dimension \(m, \rho + 2 \leq m \leq n \). By Lemma 5

\[
(\mathcal{O}(m)/\mathcal{O}(m-1))^{[\rho]} \simeq ((\mathcal{O}(m)/\mathcal{O}(m-1)) | X_m)^{[\rho]}
\]

is coherent and \(E^\rho(\mathcal{O}(m)/\mathcal{O}(m-1)) = E^\rho((\mathcal{O}(m)/\mathcal{O}(m-1)) | X_m) \) is a subvariety of dimension \(\leq \rho, \rho + 2 \leq m \leq n \). Since \(\mathcal{G}^{(\rho + 2)} = \mathcal{G}^{(\rho + 1)} \), from Lemma 4 and the exact sequences \(0 \to \mathcal{G}(m-1) \to \mathcal{G}(m) \to \mathcal{G}(m)/\mathcal{G}(m-1) \to 0, \rho + 3 \leq m \leq n \), we conclude by induction on \(m \) that \(\mathcal{G}(m)^{[\rho]} \) is coherent and \(E^\rho(\mathcal{G}(m)) \) is a subvariety of dimension \(\leq \rho, \rho + 2 \leq m \leq n \). Theorem follows from \(\mathcal{F} = \mathcal{G}(n) \). Q.E.D.

Corollary 1. Suppose \(\mathcal{F} \) is a coherent analytic sheaf on a complex space \(X \), \(\rho \) is a nonnegative integer, and \(x \in X \). \(\mathcal{F}^{[\rho]} \) is coherent at \(x \) if and only if \(x \) does not belong to a \((\rho + 1) \)-dimensional branch of \(E^{\rho + 1}(0, \mathcal{F}) \). Hence the set of points where \(\mathcal{F}^{[\rho]} \) is not coherent is either empty or it is a subvariety of pure dimension \(\rho + 1 \).

Remark. Under the assumption of Corollary 1 to Theorem 2 \(x \) does not belong to a \((\rho + 1) \)-dimensional branch of \(E^{\rho + 1}(0, \mathcal{F}) \) if and only if the zero submodule of \(\ mathcal{F} x \) has no associated prime ideal of dimension \(\rho + 1 \) [12, Theorem 4]. This gives us an algebraic criterion for the coherence of \(\mathcal{F}^{[\rho]} \) at \(x \).

Corollary 2. Suppose \(\mathcal{F} \) is a coherent analytic sheaf on a complex space \(X \) and \(\rho \) is a nonnegative integer. Let \(\mu: \mathcal{F} \to \mathcal{F}^{[\rho]} \) be the natural sheaf-homomorphism. Then \(Z = \{ x \in X | \mu_x \) is not surjective} \) is a subvariety of dimension \(\leq \rho + 1 \).

Proof. Let \(Y \) be the union of all \((\rho + 1) \)-dimensional branches of \(E^{\rho + 1}(0, \mathcal{F}) \). By Lemma 6 \(Y \subseteq Z \). Since \(\mathcal{F}^{[\rho]} \) agrees with \(\mathcal{F}^{[0]} \) on \(X - Y \), \(Z - Y = E^\rho(\mathcal{F})^{[0]}(X - Y) \) is a subvariety of dimension \(\leq \rho + 1 \). Q.E.D.

Remark. Corollary 2 to Theorem 1 can be stated alternatively in the following way: The set of points where we cannot always remove closed singularities contained in subvarieties of dimension \(\rho \) for local sections of a coherent analytic sheaf \(\mathcal{F} \) satisfying \(E^\rho(0, \mathcal{F}) = \mathcal{O} \) is a subvariety of dimension \(\leq \rho + 1 \).

The weaker statement that this set of points is contained in a subvariety of dimension \(\leq \rho + 1 \) is an easy consequence of Satz III, [9] and Satz 5, [10].

II. Extension of coherent sheaves. Suppose \(S \) is a subvariety of a complex space \(X \) and \(\mathcal{F} \) is a coherent analytic sheaf on \(X - S \). \(\mathcal{F} \) is said to satisfy \((*)_x, S \) if for every \(x \in S \) there exists some open neighborhood \(U \) of \(x \) in \(X \) such that \(\Gamma(U - S, \mathcal{F}) \) generates \(\mathcal{F} \) on \(U - S \).

Lemma 7. Suppose \(S \) is a subvariety of codimension \(\geq 2 \) in a reduced complex space \((X, \emptyset) \) of pure dimension \(n \). Let \(\theta: X - S \to X \) be the inclusion map. Suppose \(\mathcal{F} \)
is a coherent analytic sheaf on $X-S$ such that $E^{s-1}(0, \mathcal{F}) = \emptyset$. If \mathcal{F} satisfies $(*)_{x, s}$, then $R^0\theta(\mathcal{F})$ is coherent.

Proof. Let $\pi: (\overline{X}, \overline{\mathcal{O}}) \to (X, \mathcal{O})$ be the normalization of (X, \mathcal{O}). Let $\overline{S} = \pi^{-1}(S)$ and $\pi' = \pi|_{(\overline{X} - \overline{S})}$. Let $\vartheta: \overline{X} - \overline{S} \to \overline{X}$ be the inclusion map. Let \mathcal{F} be the inverse image of \mathcal{F} under π'. Let \mathcal{G} be the torsion-subsheaf of $\vartheta_*(\mathcal{F})$, $\mathcal{G} = \mathcal{F}/\mathcal{G}$, and $Y = \text{Supp} \mathcal{F}$. Since \mathcal{F} satisfies $(*)_{x, S}$, \mathcal{G} satisfies $(*)_{x, S}$. This implies that \mathcal{G} satisfies $(*)_{x, S}$. By Theorem 1, $R^0\theta(\mathcal{G})$ is coherent on \overline{X}. Let $\mathcal{G}^* = R^0\pi'\mathcal{F}$ and $\mathcal{G}_* = R^0\pi(R^0\theta(\mathcal{G}))$. \mathcal{G}^* is coherent on X. Let the sheaf-homomorphism $\alpha: \mathcal{G}^* \to \mathcal{F}^*$ on $X-S$ be induced by the quotient map $\mathcal{F} \to \mathcal{G}$. We have a natural sheaf-homomorphism $\lambda: \mathcal{F} \to \mathcal{F}^*$. Let Z be the set of all singular points on X. Let \mathcal{K} be the kernel of α. Then $\text{Supp} \mathcal{K} \subseteq Z \cup \pi(Y)$. Since $E^{s-1}(0, \mathcal{F}) = \emptyset$ and $\dim \text{Supp} \mathcal{K} \leq n-1$, $\mathcal{K} = 0$. $\alpha\lambda$ is injective. Since $R^0\theta(\mathcal{G}^* | X-S) = \mathcal{G}^*$, $\alpha\lambda$ induces a sheaf-homomorphism $\beta: R^0\theta(\mathcal{F}) \to \mathcal{G}^*$. Take $x \in S$. There exists an open neighborhood U of x in X such that $\Gamma(U-S, \mathcal{F})$ generates \mathcal{F} on $U-S$. Let η be the torsion-subsheaf of $\vartheta_*(\mathcal{F})$, $\eta = \mathcal{F}/\eta$. By Proposition 2 η is coherent. Hence $R^0\theta(\mathcal{F})$ is coherent. Q.E.D.

Lemma 8. Suppose S is a subvariety in a complex space (X, \mathcal{H}). Let $\theta: X-S \to X$ be the inclusion map. Suppose \mathcal{F}_i, $1 \leq i \leq 3$, are coherent analytic sheaves on $X-S$ such that $R^0\theta(\mathcal{F}_3)$ is coherent. Suppose $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ is an exact sequence of sheaf-homomorphisms on $X-S$. If \mathcal{F}_2 satisfies $(*)_{x, s}$ and $E^{s+1}(0, \mathcal{F}_2) = \emptyset$, then $R^0\theta(\mathcal{F}_2)$ is coherent.

Proof. Take $x \in S$. There is an open neighborhood U of x in X such that $\Gamma(U-S, \mathcal{F}_2)$ generates \mathcal{F}_2 on $U-S$. Let W be a Stein open neighborhood of x in U. We claim that $\Gamma(W-S, \mathcal{F}_2)$ generates \mathcal{F}_2 on $W-S$. There exist $s_i \in \Gamma(U-S, \mathcal{F}_2)$, $1 \leq i \leq m$, generating $(\mathcal{F}_2)_y$. Define a sheaf-homomorphism $\varphi: \mathcal{H}^m \to \mathcal{F}_2$ on $U-S$ by $\varphi(a_1, \ldots, a_m) = \sum_{i=1}^m \alpha_i(s_i)z$ for $a_1, \ldots, a_m \in \mathcal{H}_2$ and $z \in U-S$. $\eta(s_i)$ can be extended uniquely to an element of $\Gamma(U, R^0\theta(\mathcal{F}_3))$, $1 \leq i \leq m$. There is a unique sheaf-homomorphism $\psi: \mathcal{H}^n \to R^0\theta(\mathcal{F}_3)$ on U which agrees with $\eta \varphi$ on $U-S$. Let \mathcal{K} be the kernel of ψ. \mathcal{K} is coherent. There exist $u_i \in \Gamma(W, \mathcal{H})$, $1 \leq i \leq n$, generating \mathcal{K}_y. Let $v_i = \psi(u_i | (W-S))$, $1 \leq i \leq n$. Then $v_i \in \Gamma(W-S, \mathcal{F}_2)$, $1 \leq i \leq n$, and $(\mathcal{F}_2)_y$ is generated by v_1, \ldots, v_n. Q.E.D.

Lemma 9. Suppose S is a subvariety of dimension p in a complex space X. Let $\theta: X-S \to X$ be the inclusion map. Suppose \mathcal{F}_i, $1 \leq i \leq 3$, are coherent analytic sheaves on $X-S$ such that $R^0\theta(\mathcal{F}_j)$ is coherent for $j=1, 3$. Suppose $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ is an exact sequence of sheaf-homomorphisms on $X-S$. If \mathcal{F}_2 satisfies $(*)_{x, s}$ and $E^{s+1}(0, \mathcal{F}_2) = \emptyset$, then $R^0\theta(\mathcal{F}_2)$ is coherent.

Proof. Take $x \in S$. We need only prove that $R^0\theta(\mathcal{F}_2)$ is coherent at x. There is a Stein open neighborhood U of x in X such that $\Gamma(U-S, \mathcal{F}_2)$ generates \mathcal{F}_2 on $U-S$.
The exact sequence $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ induces the exact sequence $0 \to R^0\theta(\mathcal{F}_1) \to R^0\theta(\mathcal{F}_2) \to R^0\theta(\mathcal{F}_3)$. For $s \in \Gamma(U - S, \mathcal{F}_2)$ let $\tilde{s} \in \Gamma(U, R^0\theta(\mathcal{F}_2))$ be the unique extension of s and let $\eta(\tilde{s})$. Let \mathcal{I} be the subsheaf of $R^0\theta(\mathcal{F}_2)$ on U generated by $\{ \tilde{s} \mid s \in \Gamma(U - S, \mathcal{F}_2) \}$ and \mathcal{I} be the subsheaf of $R^0\theta(\mathcal{F}_3)$ on U generated by $\{ s \mid s \in \Gamma(U - S, \mathcal{F}_3) \}$.

$\eta^* (\mathcal{I}) = \mathcal{I}$. Since $R^0\theta(\mathcal{F}_2)$ is coherent, \mathcal{I} being generated by global sections is coherent. Since $R^0\theta(\mathcal{F}_1)$ is coherent and U is Stein, on U $R^0\theta(\mathcal{F}_1)$ is generated by $\Gamma(U, R^0\theta(\mathcal{F}_1)) \approx \Gamma(U - S, \mathcal{F}_1) \subset \Gamma(U - S, \mathcal{F}_2)$. $R^0\theta(\mathcal{F}_1) \subset \mathcal{I}$. We have an exact sequence $0 \to R^0\theta(\mathcal{F}_1) \to \mathcal{I} \to \mathcal{I} \to 0$, where η is induced by η and \tilde{s} is the inclusion map. Since $R^0\theta(\mathcal{F}_1)$ and \mathcal{I} are both coherent, \mathcal{I} is coherent. $E^{p+1}(0, \mathcal{I}) \subset E^{p+1}(0, \mathcal{F}_2) = \emptyset$. By Theorem $1\beta(\mathcal{I})$ is coherent. Since $\dim S = \rho$, $R^0\theta(\mathcal{F}_2) = \mathcal{I}$. The inclusion map $\mathcal{F}_2 \to \mathcal{I}$ on $U - S$ induces on U a sheaf-monomorphism $\beta: R^0\theta(\mathcal{F}_2) \to \mathcal{I}$. $\beta(R^0\theta(\mathcal{F}_2)) = \mathcal{I}[\mathcal{S}]$. Since $\mathcal{I}[\mathcal{S}]$ is coherent by Proposition 2, $R^0\theta(\mathcal{F}_3)$ is coherent on U. Q.E.D.

Lemma 10. Suppose S is a subvariety of codimension ≥ 2 in a complex space (X, \mathcal{K}) of pure dimension n. Let $\theta: X - S \to X$ be the inclusion map. Suppose \mathcal{F} is a coherent analytic sheaf on $X - S$. If \mathcal{F} satisfies $(*), E^{n-1}(0, \mathcal{F}) = \emptyset$, then $R^0\theta(\mathcal{F})$ is coherent on X.

Proof. Let \mathcal{K} be the subsheaf of all nilpotent elements of \mathcal{K} and $\mathcal{F} = \mathcal{K}$. Since the Lemma is local in nature, we can suppose that for some nonnegative integer $k \mathcal{K}^k = 0$. For $0 \leq l \leq k$ define coherent analytic sheaves $\mathcal{F}^l(\mathcal{K})$ on $X - S$ inductively as follows: $\mathcal{F}^0(\mathcal{K}) = \mathcal{F}$ and, for $1 \leq l \leq k$, $\mathcal{F}^l(\mathcal{K}) = (\mathcal{K} \mathcal{F}^l(\mathcal{K}))_{(n-1)\mathcal{F}^{l-1}}$. Let

$$Y = \bigcup_{l=1}^{k} E^{n-1}(X \mathcal{F}^l(\mathcal{K}), \mathcal{F}^{l-1})$$

Y is a subvariety in $X - S$ of dimension $\leq n - 1$. On $X - (S \cup Y)$, $\mathcal{F}^l = \mathcal{K} \mathcal{F}^l(\mathcal{K})$ for $1 \leq l \leq k$. Hence $\mathcal{F}^k = 0$ on $X - (S \cup Y)$. Since $\mathcal{F}^k(\mathcal{K}) \subset \mathcal{F}$ and $E^{n-1}(0, \mathcal{F}) = \emptyset$, $\mathcal{F}^k = 0$ on $X - S$. From the definition of \mathcal{F}^l we see that $E^{n-1}(\mathcal{F}^l, \mathcal{F}^{l-1}) = \emptyset$ for $1 \leq l \leq k$. Hence $E^{n-1}(0, \mathcal{F}^{l-1} \mathcal{F}^l(\mathcal{K}) = 0$ for $1 \leq l \leq k$. $E^{n-1}(0, \mathcal{F}^l) = \emptyset$ implies that $E^{n-1}(0, \mathcal{F}^l) = \emptyset$ for $1 \leq l \leq k$. Since $\mathcal{F}^l \subset \mathcal{F}^l(\mathcal{K})$, $\mathcal{F}^{l-1} \mathcal{F}^l(\mathcal{K})$ can be regarded as a coherent analytic sheaf on $(X - S, \mathcal{O} | (X - S))$, $1 \leq l \leq k$.

Set $\mathcal{F}^{k+1} = 0$. We are going to prove (2), for $0 \leq l \leq k$ by induction on l:

$(2)_l$ \mathcal{F}^l satisfies $(*)_{X,S}$ and $R^0\theta(\mathcal{F}^l(\mathcal{K}), \mathcal{F}^{l+1})$ is coherent.

Since $\mathcal{F}^0 = \mathcal{F}$, \mathcal{F}^l satisfies $(*)_{X,S}$. $\mathcal{F}^l(\mathcal{K}) / \mathcal{F}^{l+1}$ satisfies $(*)_{X,S}$. By Lemma 7

$$R^0\theta(\mathcal{F}^l(\mathcal{K}), \mathcal{F}^{l+1})$$

is coherent. $(2)_0$ is true. Suppose for some $0 \leq m < k$ $(2)_m$ is true. By Lemma 8 and
the exact sequence $0 \rightarrow \mathcal{F}(m + 1) \rightarrow \mathcal{F}(m) \rightarrow \mathcal{F}(m)/\mathcal{F}(m + 1) \rightarrow 0$, we conclude that $\mathcal{F}(m + 1)$ satisfies $(*)_{X,S}$. Hence $\mathcal{F}(m + 1)/\mathcal{F}(m + 2)$ satisfies $(*)_{X,S}$. By Lemma 7

$$R^0\theta(\mathcal{F}(m + 1)/\mathcal{F}(m + 2))$$

is coherent. $(2)_{m+1}$ is true. Hence $(2)_l$ holds for $0 \leq l \leq k$.

Now we are going to prove $(3)_l$ for $0 \leq l \leq k$ by backward induction on l:

$$(3)_l$$

Since $\mathcal{F}^{(k)}=0$, $(3)_k$ is true. Suppose $(3)_m$ is true for some $0 < m \leq k$. From $(2)_{m-1}$, $(3)_m$, Lemma 10 and the exact sequence $0 \rightarrow \mathcal{F}(m) \rightarrow \mathcal{F}(m - 1) \rightarrow \mathcal{F}(m - 1)/\mathcal{F}(m) \rightarrow 0$, we conclude that $(3)_{m-1}$ is true. Hence $(3)_l$ holds for $0 \leq l \leq k$. The Lemma follows from $(3)_0$. Q.E.D.

Lemma 11. Suppose S is a subvariety of dimension p in a complex space (X, \mathcal{H}). Suppose \mathcal{F} is a coherent analytic sheaf on $X-S$ such that $\operatorname{Supp} \mathcal{F}$ is a subvariety of pure dimension $n > p$ and $E^{n-1}(0, \mathcal{F})=0$. Then there exists a complex subspace (Y, \mathcal{K}) of pure dimension n in (X, \mathcal{H}) such that $Y-S=\operatorname{Supp} \mathcal{F}$ and $\mathcal{F}|(Y-S)$ can be regarded as a coherent analytic sheaf on $(Y-S, \mathcal{K}|(Y-S))$.

Proof. By [7, V.D.5] the topological closure Y of $\operatorname{Supp} \mathcal{F}$ in X is a subvariety of pure dimension n. Let $Y=\bigcup_{\alpha \in A} Y_{\alpha}$ be the decomposition into irreducible branches. Let \mathcal{J}_{α} be the ideal-sheaf for $Y_{\alpha}, \alpha \in A$. Choose $x_\alpha \in Y_{\alpha}-(S \cup (\bigcup_{\beta \in B, \beta \neq \alpha} Y_{\beta}))$. Let \mathcal{J} be the annihilator-ideal-sheaf for \mathcal{F}. Then $E(\mathcal{J}, \mathcal{H}|(X-S))=Y-S$. By Hilbert Nullstellensatz, there exists a natural number m_α such that $(\mathcal{J}^{m_\alpha})_{\alpha} \subset \mathcal{J}_{\alpha}, \alpha \in A$. Let $\mathcal{J}=\prod_{\alpha \in A} \mathcal{J}^{m_\alpha}$. Then \mathcal{J} is coherent and $(\mathcal{J}^{m})_{\alpha}=0$ for $\alpha \in A$. $\operatorname{Supp} \mathcal{F}$ is a subvariety of dimension $<n$ in $X-S$. $E^{n-1}(0, \mathcal{F})=0$ implies that $\mathcal{J}^{n}=0$. Set $\mathcal{K}=(\mathcal{J}^{n})|Y$. Then (Y, \mathcal{K}) satisfies the requirements. Q.E.D.

Theorem 2. Suppose S is a subvariety of dimension p in a complex space (X, \mathcal{H}). Let $\theta: X-S \rightarrow X$ be the inclusion map. Suppose \mathcal{F} is a coherent analytic sheaf on $X-S$ such that $E^{p+1}(0, \mathcal{F})=0$ or equivalently for every $x \in X-S$ the zero \mathcal{H}_x-submodule of \mathcal{F}_x has no associated prime ideal of dimension $\leq p+1$. Then the following conditions are equivalent:

(i) $R^0\theta(\mathcal{F})$ is coherent.

(ii) There exists a coherent analytic sheaf on X which extends \mathcal{F}.

(iii) \mathcal{F} satisfies $(*)_{X,S}$.

Proof. It is clear that (i) implies (ii) and (ii) implies (iii). We need only prove that (iii) implies (i). Suppose \mathcal{F} satisfies $(*)_{X,S}$. We are going to prove that $R^0\theta(\mathcal{F})$ is coherent. Since the problem is local in nature, we can suppose that X is of finite dimension n. If $n < p+2$, then $E^{p+1}(0, \mathcal{F})=0$ implies that $\mathcal{F}=0$. $R^0\theta(\mathcal{F})=0$ is coherent. So we can assume that $n \geq p+2$. For $p+1 \leq m \leq n$ let $\mathcal{F}^{(m)}=0_{m|\mathcal{F}}$. $\mathcal{F}^{(p+1)}=0$, because $E^{p+1}(0, \mathcal{F})=0$. For $p+2 \leq m \leq n$ let $X_m=\operatorname{Supp} \mathcal{F}^{(m)}/\mathcal{F}^{(m-1)}$. Then X_m is the union of all m-dimensional branches of $E^m(0, \mathcal{F}), p+2 \leq m \leq n$. Coherence of $\mathcal{F}^{(m)}$ implies coherence of $\mathcal{F}^{(p+1)}$. Coherence of $\mathcal{F}^{(p+1)}$ implies coherence of $\mathcal{F}^{(p+2)}$.
Let $\theta_m: Y_m - S \to Y_m$ be the inclusion map $p+2 \leq m \leq n$. By Lemma 11 there exists a complex subspace (Y_m, \mathcal{H}_m) of pure dimension m in (X, \mathcal{H}) such that $Y_m - S = X_m$ and $(\mathcal{G}^{(m)}/\mathcal{G}^{(m-1)})(Y_m - S)$ can be regarded as a coherent analytic sheaf on $(Y_m - S, \mathcal{H}_m|_{(Y_m - S)})$, $p+2 \leq m \leq n$.

We are going to prove $(4)_m$ for $p+2 \leq m \leq n$ by backward induction on m:

$(4)_m$ $\mathcal{G}^{(m)}$ satisfies (*)$_{X,S}$ and $R^0\theta(\mathcal{G}^{(m)}/\mathcal{G}^{(m-1)})$ is coherent.

Since $\mathcal{G}^{(n)} = \mathcal{F}$, $\mathcal{G}^{(n)}$ satisfies (*)$_{X,S}$. $(\mathcal{G}^{(n)}/\mathcal{G}^{(n-1)})(Y_n - S)$ satisfies (*)$_{Y_n,Y_n,S}$. By Lemma 10 $R^0\theta(\mathcal{G}^{(n)}/\mathcal{G}^{(n-1)})(Y_n - S)$ is coherent. $(4)_n$ is true. Suppose for some $p+2 < q \leq n$, $(4)_q$ is true. From Lemma 8, $(4)_q$, and the exact sequence $0 \to \mathcal{G}^{(q-1)} \to \mathcal{G}^{(q)} \to \mathcal{G}^{(q)}/\mathcal{G}^{(q-1)} \to 0$ we conclude that $R^0\theta(\mathcal{G}^{(q-1)})$ satisfies (*)$_{X,S}$. $(\mathcal{G}^{(q-1)}/\mathcal{G}^{(q-2)})(Y_{q-1} - S)$ satisfies (*)$_{Y_{q-1},Y_{q-1},S}$. By Lemma 10 $R^0\theta(\mathcal{G}^{(q-1)}/\mathcal{G}^{(q-2)})(Y_{q-1} - S)$ is coherent. $(4)_{q-1}$ is true. Hence $(4)_m$ holds for $p+2 \leq m \leq n$.

Now we are going to prove $(5)_m$ for $p+1 \leq m \leq n$ by induction on m:

$(5)_m$ $R^0(\mathcal{G}^{(m)})$ is coherent.

Since $\mathcal{G}^{(p+1)} = 0$, $(5)_{p+1}$ is true. Suppose $(5)_q$ is true for some $p+1 \leq q < n$. From $(4)_{q+1}$, $(5)_q$, Lemma 9, and the exact sequence $0 \to \mathcal{G}^{(q)} \to \mathcal{G}^{(q+1)} \to \mathcal{G}^{(q+1)}/\mathcal{G}^{(q)} \to 0$ we conclude that $R^0\theta(\mathcal{G}^{(q+1)})$ is coherent. $(5)_{q+1}$ is true. Hence $(5)_m$ holds for $p+1 \leq m \leq n$. Since $\mathcal{G}^{(m)} = \mathcal{F}$, $(5)_m$ implies that $R^0\theta(\mathcal{F})$ is coherent. Q.E.D.

Corollary. Suppose S is a subvariety of dimension p in a complex space (X, \mathcal{H}) and $\theta: X - S \to X$ is the inclusion map. Suppose \mathcal{F} is a coherent analytic sheaf on $X - S$ such that the homological codimension (p. 358, [9]) of the \mathcal{H}_x-module $\mathcal{I}_x \geq p+2$ for $x \in X$. Then the following conditions are equivalent:

(i) $R^0\theta(\mathcal{F})$ is coherent.

(ii) There exists a coherent analytic sheaf on X which extends \mathcal{F}.

(iii) \mathcal{F} satisfies (*)$_{X,S}$.

Proof. Follows from Theorem 2 and Satz I [9]. Q.E.D.

Remark. [14, (4.1)] is a special case of the Corollary to Theorem 2.

III. Extensions of global sections of coherent sheaves.

Definition 4. Suppose ρ is a natural number. A real-valued function v on a complex space X is said to be *-strongly ρ-convex at $x \in X$ if there exist a nowhere degenerate holomorphic map φ from some open neighborhood U of x in X to an open subset D of \mathbb{C}^n and a real-valued C^2 function δ on D such that $v = \overline{\varphi} \delta$ on U and at every point in D the Hermitian matrix $(\partial^2 v/\partial z_i \partial \overline{z}_j)_{1 \leq i,j \leq n}$ has at least $n - \rho + 1$ positive eigenvalues.

Definition 5. Suppose ρ is a natural number. An open subset D of a complex space X is said to be *-strongly ρ-concave at $x \in X$ if there is a *-strongly ρ-convex
function v on some open neighborhood U of x in X such that $D \cap U = \{ y \in U \mid v(y) > v(x) \}$.

Lemma 12. Suppose \mathcal{F} is a coherent analytic sheaf on a reduced complex space (X, \mathcal{O}) of pure dimension n such that $E^{n-1}(0, \mathcal{F}) = \emptyset$. Suppose $1 \leq p < n$, $x \in X$, and D is an open subset of X which is $*$-strongly p-concave at x. Then there exist an open neighborhood U of x in X, a subvariety V of dimension $< p$ in U, and a natural number m satisfying the following: If for some open neighborhood W of x in U $f \in \Gamma(W, \mathcal{O})$ vanishes identically on $V \cap W$ and $s \in \Gamma(W \cap D, \mathcal{F})$, then $f^m s \mid W' \cap D$ can be extended to an element of $\Gamma(W', \mathcal{F})$ for some open neighborhood W' of x in W.

Proof. Let $\pi: (X, \mathcal{O}) \to (X, \mathcal{O})$ be the normalization of (X, \mathcal{O}). Let \mathcal{F} be the inverse image of \mathcal{F} under π, \mathcal{F}^\prime is the torsion subsheaf of \mathcal{F}, and $\mathcal{S} = \mathcal{F}^\prime / \mathcal{F}$. Let $\pi^{-1}(x) = \{ y_1, \ldots, y_k \}$. For every $1 \leq i \leq k$ there exists a sheaf-monomorphism $\alpha_i: \mathcal{G} \to \mathcal{F}$ on some open neighborhood U_i of y_i in X. By shrinking U_i, $1 \leq i \leq k$, we can suppose that $U_i \cap U_j = \emptyset$ for $i \neq j$. There is an open neighborhood U^\ast of x in X such that $\pi^{-1}(U^\ast) = \bigsqcup_{i=1}^k U_i$. Define a coherent analytic sheaf \mathcal{F} on $\pi^{-1}(U^\ast)$ by setting $\mathcal{F} = \mathcal{G}$ on some open neighborhood U_i of y_i in X. By shrinking U_i, $1 \leq i \leq k$, we can suppose that $U_i \cap U_j = \emptyset$ for $i \neq j$. There is an open neighborhood U^\ast of x in X such that $\pi^{-1}(U^\ast) = \bigsqcup_{i=1}^k U_i$. Define a coherent analytic sheaf \mathcal{F} on $\pi^{-1}(U^\ast)$ by setting $\mathcal{F} = \mathcal{G}$ on some open neighborhood U_i of y_i in X. By shrinking U_i, $1 \leq i \leq k$, we can suppose that $U_i \cap U_j = \emptyset$ for $i \neq j$. There is an open neighborhood U^\ast of x in X such that $\pi^{-1}(U^\ast) = \bigsqcup_{i=1}^k U_i$. Define a coherent analytic sheaf \mathcal{F} on $\pi^{-1}(U^\ast)$ by setting $\mathcal{F} = \mathcal{G}$ on some open neighborhood U_i of y_i in X. By shrinking U_i, $1 \leq i \leq k$, we can suppose that $U_i \cap U_j = \emptyset$ for $i \neq j$. There is an open neighborhood U^\ast of x in X such that $\pi^{-1}(U^\ast) = \bigsqcup_{i=1}^k U_i$. Define a coherent analytic sheaf \mathcal{F} on $\pi^{-1}(U^\ast)$ by setting $\mathcal{F} = \mathcal{G}$ on some open neighborhood U_i of y_i in X. By shrinking U_i, $1 \leq i \leq k$, we can suppose that $U_i \cap U_j = \emptyset$ for $i \neq j$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
vanishes identically on $V \cap W$ and $s \in \Gamma(W \cap D, \mathcal{F})$, then $f^m s|W' \cap D$ can be extended to an element of $\Gamma(W', \mathcal{F})$ for some open neighborhood W' of x in W.

Proof. Let \mathcal{H} be the subsheaf of all nilpotent elements of \mathcal{H} and $\mathcal{O} = \mathcal{H}/\mathcal{H}$. Since the Lemma is local in nature, we can suppose that $\mathcal{H}^k = 0$ for some natural number k. For $0 \leq l \leq k$ define $\mathcal{F}^{(l)}$ inductively as follows:

$$\mathcal{F}^{(0)} = \mathcal{F}, \quad \text{and, for } 1 \leq l \leq k, \quad \mathcal{F}^{(l)} = (\mathcal{H}^{(l-1)}|_{\mathcal{O}^{(l-1)}}).$$

As in the Proof of Lemma 5, we have the following:

$$\mathcal{F}^{(k)} = 0; \quad E^{n-1}(0, \mathcal{F}^{(l-1)}|\mathcal{F}^{(l)}) = \emptyset \quad \text{for } 1 \leq l \leq k;$$

and $\mathcal{F}^{(0)} = \mathcal{F}^{(l)}/\mathcal{F}^{(l+1)}$, $0 \leq l \leq k-1$, can be regarded as a coherent analytic sheaf on the reduced complex space (X, \mathcal{O}). By Lemma 12 for $0 \leq l \leq k-1$ we have a subvariety V_l of dimension $< \rho$ in some open neighborhood U_l of x in X and a natural number p_l satisfying the following: If for some open neighborhood W of x in U_l $f \in \Gamma(W, \mathcal{O})$ vanishes identically on $V_l \cap W$ and $s \in \Gamma(W \cap D, \mathcal{F}^{(l)})$, then $f^m s|W' \cap D$ can be extended to an element of $\Gamma(W', \mathcal{F}^{(l)})$ for some open neighborhood W' of x in W.

Let $U = \bigcap_{l=0}^{k-1} U_l$ and $V = \bigcup_{l=0}^{k-1} (V_l \cap U)$. Let $m_l = \sum_{i=1}^{l-1} p_i$, $0 \leq l \leq k-1$. By considering the exact sequences $0 \to \mathcal{F}^{(l+1)} \to \mathcal{F}^{(l)} \to \mathcal{F}^{(l)} \to 0$, $0 \leq l \leq k-1$, and by backward induction on l, we conclude the following for $0 \leq l \leq k-1$: If $f \in \Gamma(W, \mathcal{H})$ vanishes identically on $W \cap V$ and $s \in \Gamma(W \cap D, \mathcal{F}^{(l)})$ for some open neighborhood W of x in U, then $f^m s|W' \cap D$ can be extended to an element of $\Gamma(W', \mathcal{F}^{(l)})$ for some open neighborhood W' of x in W. Hence U, V, and $m = m_0$ satisfy the requirements. Q.E.D.

Lemma 14. Suppose \mathcal{F} is a coherent analytic sheaf on a complex space (X, \mathcal{O}) and ρ is a natural number such that $E^p(0, \mathcal{F}) = \emptyset$. Suppose $x \in X$ and D is an open subset of X which is *-strongly ρ-concave at x. Then there exist an open neighborhood U of x in X, a subvariety V of dimension $< \rho$ in U, and a natural number m satisfying the following: For some open neighborhood W of x in U, $f \in \Gamma(W, \mathcal{H})$ vanishes identically on $W \cap V$ and $s \in \Gamma(W \cap D, \mathcal{F})$, then $f^m s|W' \cap D$ can be extended to an element of $\Gamma(W', \mathcal{F})$ for some neighborhood W' of x in W.

Proof. Since the problem is local in nature, we can suppose that X is of finite dimension n. If $n \leq \rho$, $E^p(0, \mathcal{F}) = \emptyset$ implies that $\mathcal{F} = 0$ and what is to be proved is trivial. So we can suppose that $n > \rho$. Define $\mathcal{G}^{(l)} = 0_{k \leq n}$ for $\rho \leq k \leq n$. $\mathcal{G}^{(0)} = 0$. For $\rho < k \leq n$ let $X_k = \text{Supp} \mathcal{G}^{(l)}/\mathcal{G}^{(k-1)}$ and let $\mathcal{A}^{(k)}$ be the annihilator-ideal-sheaf for $\mathcal{G}^{(k)}/\mathcal{G}^{(k-1)}$. For $\rho < k \leq n$ X_k is empty or of pure dimension k, $E^{k-1}(0, \mathcal{G}^{(k)}/\mathcal{G}^{(k-1)}) = \emptyset$, and $(\mathcal{G}^{(k)}/\mathcal{G}^{(k-1)})|X_k$ can be regarded as a coherent analytic sheaf on the complex space $(X_k, (\mathcal{H}^{(k)}/\mathcal{A}^{(k)})|X_k)$. By Lemma 13, for $\rho < k \leq n$, if $x \in X_k$, there exist a subvariety V_k of dimension $< \rho$ in some open neighborhood U_k of x in X_k and a
natural number p_k satisfying the following: If for some open neighborhood W of x in $U_k f \in \Gamma(W, (\mathcal{H}^k/\mathcal{G}^{(k)}|X_k)$ vanishes identically on $W \cap V_k$ and

$$s \in \Gamma(W \cap D, \mathcal{G}^{(k)}/\mathcal{G}^{(k-1)}),$$

then $f^{p_k}s|W' \cap D$ can be extended to an element of $\Gamma(W', \mathcal{G}^{(k')}/\mathcal{G}^{(k-1)})$ for some open neighborhood W' of x in W. For $p < k \leq n$, if $x \in X_k$, choose an open neighborhood U_k of x in X such that $U_k \cap X_k = U_k$; and, if $x \notin X_k$, let $U_k = X$, $V_k = \emptyset$, and $p_k = 1$.

Let $U = \bigcap_{k=0}^n U_k$ and $V = \bigcup_{k=0}^n (U \cap V_k)$. Set $m_k = \sum_{i=0}^k p_i$. By considering the exact sequences $0 \to \mathcal{G}^{(k)} \to \mathcal{G}^{(k+1)} \to \mathcal{G}^{(k+1)}/\mathcal{G}^{(k)} \to 0$, $\rho \leq k \leq n-1$, and by induction on k, we conclude the following for $p < k \leq n$: If for some open neighborhood W of x in $U f \in \Gamma(W, \mathcal{H})$ vanishes on $V \cap W$ and $s \in \Gamma(W \cap D, \mathcal{G}^{(k)})$, then $f^{p_k}s|W' \cap D$ can be extended to an element of $\Gamma(W', \mathcal{G}^{(k)})$ for some open neighborhood W' of x in W. The Lemma follows from $F = \mathcal{G}^{(n)}$ and $m = m_n$.

Q.E.D.

Theorem 3 (Local Extension). Suppose \mathcal{F} is a coherent analytic sheaf on a complex space (X, \mathcal{H}) and ρ is a natural number such that $\mathcal{F} = \mathcal{F}^{(\rho-1)}$. Suppose $x \in X$ and D is an open subset of X which is *-strongly ρ-concave at x. Then the following is satisfied: If $s \in \Gamma(W \cap D, \mathcal{F})$ for some open neighborhood W of x in X, then $s|W' \cap D$ can be extended to an element t of $\Gamma(W', \mathcal{F})$ for some open neighborhood W' of x in W and t_x is uniquely determined.

Proof. Since $\mathcal{F} = \mathcal{F}^{(\rho-1)}$, by Theorem 1, and the definition of $\mathcal{F}^{(\rho-1)}$, $E^\sigma(0, \mathcal{F}) = \emptyset$. There exist an open neighborhood U of x in X, a subvariety V of dimension $< \rho$ in U, and a natural number m satisfying the requirements of Lemma 14. By Lemma 3 every branch of $E^\sigma(0, \mathcal{F})$ has dimension $> \rho$ for every nonnegative integer σ. By shrinking U we can assume that there is $f \in \Gamma(U, \mathcal{H})$ such that f vanishes identically on V and f does not vanish identically on any branch of $E^\sigma(0, \mathcal{F}) \cap U$ for any nonnegative integer σ. By Lemma 2 the sheaf-homomorphism $\alpha: \mathcal{F} \to \mathcal{F}$ on U defined by multiplication by f^m is injective.

Suppose $s \in \Gamma(W \cap D, \mathcal{F})$. For some open neighborhood W' of x in W $a(s)|W' \cap D$ can be extended to an element $t \in \Gamma(W', \mathcal{F})$. $Z = \{y \in W' | ~ i_y \notin a(\mathcal{F})_y\}$ is a subvariety in W'. Since D is *-strongly ρ-concave at x and $Z \cap D = \emptyset$, either $x \notin Z$ or $\dim Z_x < \rho$. By shrinking W', we can assume that either $Z \cap W' = \emptyset$ or $\dim Z < \rho$. $i \in \Gamma(W', a(\mathcal{F})_{(\rho-1)})$. $\mathcal{F} = \mathcal{F}^{(\rho-1)}$ implies that $a(\mathcal{F})_{(\rho-1)} = a(\mathcal{F})$. Hence $i \in \Gamma(W', a(\mathcal{F}))$. $t = a^{-1}(i) \in \Gamma(W', \mathcal{F})$ extends $s|W' \cap D$.

Suppose for some other open neighborhood W'' of x in W there is $t' \in \Gamma(W'', \mathcal{F})$ extending $s|W'' \cap D$. We are going to prove that $t'_x = t_x$. By shrinking both W' and W'', we can assume that $W'' = W''$. $Y = \{y \in W' | ~ t'_y \neq t_y\}$ is a subvariety in W'. Since D is *-strongly ρ-concave at x and $Y \cap D = \emptyset$, either $x \notin Y$ or $t'_x - t_x \in (0_{(\rho-1)})_x = 0$. Q.E.D.
Theorem 4 (Global Extension). Suppose \(\rho \) is a natural number and \(v \) is a \(*\)-strongly \(\rho \)-convex function on a complex space \(X \) such that \(\{ x \in X \mid \lambda < v(x) < \mu \} \) is relatively compact in \(X \) for any two real numbers \(\lambda < \mu \). Suppose \(\mathcal{F} \) is a coherent analytic sheaf on \(X \) satisfying \(\mathcal{F} = \mathcal{F}^{(0,-1)} \). Then for \(\lambda \in \mathbb{R} \) every section of \(\mathcal{F} \) on \(X_\lambda = \{ x \in X \mid v(x) > \lambda \} \) is uniquely extendible to a section of \(\mathcal{F} \) on \(X \).

Proof. We can assume that \(X \) as a topological space is connected. Since \(E^0(0, \mathcal{F}) = \emptyset \), we can assume that every branch of \(X \) has dimension \(> \rho \). Fix \(\lambda_0 \in \mathbb{R} \) and \(s \in \Gamma(X_{\lambda_0}, \mathcal{F}) \). We can assume that \(X_{\lambda_0} \neq \emptyset \). Let \(\Lambda = \{ \lambda \in \mathbb{R} \mid \lambda \leq \lambda_0 \} \) and \(s \) can be extended to \(s_\lambda \in \Gamma(X_\lambda, \mathcal{F}) \). Clearly, if \(\lambda \in \Lambda \) and \(\lambda < \mu \), then \(\mu \in \Lambda \). We are going to prove:

\[
(6) \quad \text{If } \lambda \in \Lambda \text{ and } s_\lambda, s'_\lambda \in \Gamma(X_\lambda, \mathcal{F}) \text{ both extend } s, \text{ then } s_\lambda = s'_\lambda.
\]

Suppose the contrary. Then \(Z = \{ x \in X_\lambda \mid (s_\lambda)_x \neq (s'_\lambda)_x \} \) is a nonempty subvariety in \(X_\lambda \). Let \(Z_0 \) be a branch of \(Z \). Take \(x^* \in Z_0 \) and let \(\lambda^* = v(x^*) \). Let \(\xi = \sup \{ v(x) \mid x \in Z_0 \} \). Since \(Z \cap X_{\lambda_0} = \emptyset \), \(\xi \) is the supremum of \(v \) on the compact set \(Z_0 \cap \{ x \in X \mid \lambda^* \leq v(x) \leq \lambda_0 \} \). \(\xi = v(y) \) for some \(y \in Z_0 \). Since \(X_\xi \) is \(*\)-strongly \(\rho \)-concave at \(y \) and \(Z_0 \cap X_\xi = \emptyset \), we have \(\text{dim}(Z_0)_y < \rho \). Since \(Z_0 \) is irreducible, \(\text{dim} Z_0 < \rho \). Hence \(\text{dim} Z < \rho \). \(s_\lambda - s'_\lambda \in \Gamma(X_\lambda, 0^{(\rho-1)}) \). (6) follows from \(0^{(\rho-1)} = 0 \).

For \(\lambda \in \Lambda \) denote the unique element of \(\Gamma(X_\lambda, \mathcal{F}) \) which extends \(s \) by \(s_\lambda \). To finish the proof, we need only prove that \(\Lambda \) has no lower bound, because in that case \(\Lambda = \{ \lambda \in \mathbb{R} \mid \lambda \leq \lambda_0 \} \) and by (6) \(s^* \in \Gamma(X, \mathcal{F}) \) defined by \(s^*|_{X_\lambda} = s_\lambda \) for \(\lambda \in \Lambda \) extends \(s \). Suppose the contrary. Then \(\eta = \inf \Lambda \) exists and is finite. Since \(X \) is connected, this implies that \(X_\eta \) is not closed in \(X \). By Theorem 3 for every \(x \) in the boundary \(\partial X_\eta \) of \(X_\eta \) there exists an open neighborhood \(U_x \) of \(x \) in \(X \) such that \(s_n \) can be extended to \(t_n \in \Gamma(U_x \cup X_\eta, \mathcal{F}) \). For \(x, x' \in \partial X_\eta \) let \(Y_{(x,x')} = \{ z \in U_x \cap U_{x'} \mid (t_n)_z \neq (t_n')_z \} \). Since \(0^{(\rho-1)} = \emptyset \), \(Y_{(x,x')} \) is either empty or every branch of \(Y_{(x,x')} \) has dimension \(\geq \rho \). Since \(X_\eta \) is \(*\)-strongly \(\rho \)-concave at every one of its boundary points,

\[
(7) \quad Y_{(x,x')} \cap \partial X_\eta = \emptyset \quad \text{for } x, x' \in \partial X_\eta.
\]

Since \(\partial X_\eta \) is compact we can choose \(x_1, \ldots, x_k \in \partial X_\eta \) such that \(\partial X_\eta \subset \bigcup_{i=1}^k U_{x_i} \). For \(1 \leq i \leq k \) choose a relatively compact open neighborhood \(W_i \) of \(x_i \) in \(U_{x_i} \) such that \(\partial X_\eta \subset \bigcup_{i=1}^k W_i \). Let \(W_i^- \) be the closure of \(W_i \) in \(X \). (7) implies that we can choose an open neighborhood \(W \) of \(\partial X_\eta \) in \(\bigcup_{i=1}^k W_i \) such that \(W \) does not intersect the closed set \(\bigcup_{1 \leq i,j \leq k, i \neq j} Y_{(x_i,x_j)} \cap W_i^- \cap W_j^- \). For some \(\lambda < \eta \), \(X_\lambda \subset W \cup X_\eta \) because of Proposition 2.7 of [3]. Define \(t \in \Gamma(X_\lambda, \mathcal{F}) \) by setting \(t = s_{(x_1)} \) on \((U_{x_1} \cup X_\eta) \cap X_\lambda \). \(t \) extends \(s \), contradicting \(\lambda \notin \Lambda \).

Uniqueness follows from (6). Q.E.D.

Remarks. (i) Theorem 3 generalizes the Theorem on p. 279 of [4] and Theorem 4 generalizes Corollary 5.2 of [4] because of Theorem 4.3 of [4]. Theorems 3 and 4...
here have the advantage that, if \mathcal{F} does not satisfy $\mathcal{F} = \mathcal{F}^{|0,-1}$, we can always construct the coherent analytic sheaf $\mathcal{G} = (\mathcal{F}^{|0,-1})^{|0,-1}$ which satisfies $\mathcal{G} = \mathcal{G}^{|0,-1}$.

(ii) Suppose \mathcal{F} is a coherent analytic sheaf on a complex space (X, \mathcal{H}) and $x \in X$. The condition $\mathcal{F}_x = (\mathcal{F}^{|0})_x$ is equivalent to the condition $\text{codh } \mathcal{F}_x \geq 2$. It can be proved in the following way: If $\mathcal{F}_x = (\mathcal{F}^{|0})_x$, then $E^0(0, \mathcal{F}) = \emptyset$ and by Lemmas 2 and 3 we can find $f \in \Gamma(U, \mathcal{F})$ for some open neighborhood U of x in X such that f_x is not a unit of \mathcal{H}_x and f_x is not a zero-divisor for \mathcal{F}_x. By shrinking U, we can assume that f_y is not a zero-divisor for \mathcal{F}_y for $y \in U$. Suppose $x \in E^0(f\mathcal{F}, \mathcal{F}|U)$. By shrinking U, we can find $g \in \Gamma(U, \mathcal{F})$ such that $g_y \in (f\mathcal{F})_y$ for $y \in U - \{x\}$ and $g_x \notin (f\mathcal{F})_x$. Then $h \in \Gamma(U, \mathcal{F}^{|0})$ defined by $g_y = f_y h_y$ for $y \in U - \{x\}$ does not satisfy $h_x \in \mathcal{F}_x$. This is a contradiction. Hence $x \notin E^0(f\mathcal{F}, \mathcal{F}|U)$. By Lemmas 2 and 3 we can find $s \in \mathcal{H}_x$ which vanishes at x and is not a zero-divisor for $(f\mathcal{F})_x$. $\text{codh } \mathcal{F}_x \geq 2$. On the other hand $\text{codh } \mathcal{F}_x \geq 2$ implies $\mathcal{F}_x = (\mathcal{F}^{|0})_x$ by Korollar zu Satz III, [9].

The equivalence of $\mathcal{F}_x = (\mathcal{F}^{|0})_x$ and $\text{codh } \mathcal{F}_x \geq 2$ is also a consequence of [14, (1.1)]. However, the proof presented here is more conceptual than the proof in [14].

(iii) In the case of Stein spaces we have the following stronger version of Theorem 4 which generalizes Theorem 5.4 of [4]:

Suppose \mathcal{F} is a coherent analytic sheaf on a Stein space X such that $\mathcal{F} = \mathcal{F}^{|0}$. Suppose K is a compact subset of X such that, if A is a branch of $E^\sigma(0, \mathcal{F})$ for any $\sigma \geq 2$, then $A - K$ is irreducible. Then for every open neighborhood U of K in X every element of $\Gamma(U - K, \mathcal{F})$ can be extended uniquely to an element of $\Gamma(U, \mathcal{F})$.

(8) It can be proved in the following way: Suppose $s \in \Gamma(U - K, \mathcal{F})$. Since $H^1(X, \mathcal{F}) = 0$, from the Mayer-Vietoris sequence of \mathcal{F} on $X = (X - K) \cup U$ (p. 236, [2]) we conclude that for some $f \in \Gamma(X - K, \mathcal{F})$ and $g \in \Gamma(U, \mathcal{F})$ we have $f - g = s$ on $U - K$. From Theorem 4 we can find $f \in (X, \mathcal{F})$ which agrees with f outside some compact subset of X. Since $E^\sigma(0, \mathcal{F}) = \emptyset$ for $\sigma \leq 1$ and $A - K$ is irreducible for any branch A of $E^\sigma(0, \mathcal{F})$ with $\sigma \geq 2$, f agrees with f^β on $X - K$. $(f^\beta|U) - g$ extends s. The extension is clearly unique, because $E^0(0, \mathcal{F}) = \emptyset$.

In view of the equivalence of $\mathcal{F}_x = (\mathcal{F}^{|0})_x$ and $\text{codh } \mathcal{F}_x \geq 2$, in the above proof we can use Theorem 15 of [2] instead of Theorem 4. So (8) can be proved also by the finiteness theorems of pseudoconvex spaces in [2].

(8) generalizes Theorem 5.4 of [4] because of the following:

Suppose K is a closed subset of an irreducible complex space X and U is an open neighborhood of K in X such that for every branch A of $U - A$ is irreducible. Then $X - K$ is irreducible.
Let R be the set of all regular points of X. To prove (9), we need only show that $R - K$ is connected. Suppose $R \cap U = \bigcup_{i \in I} R_i$ is the decomposition into topological components. Then $R_i - K$ is connected for $i \in I$. The restriction map $\Gamma(R \cap U, C) \rightarrow \Gamma(R \cap (U - K), C)$ is an isomorphism. From the following portion of the Mayer-Vietoris sequence of the constant sheaf C on $R = (R \cap U) \cup (R - K)$:
$$0 \rightarrow \Gamma(R, C) \rightarrow \Gamma(R - K, C) \oplus \Gamma(R \cap U, C) \rightarrow \Gamma(R \cap (U - K), C),$$
we conclude that the restriction map $\Gamma(R, C) \rightarrow \Gamma(R - K, C)$ is an isomorphism. $R - K$ is connected.

REFERENCES

UNIVERSITY OF NOTRE DAME,
NOTRE DAME, INDIANA

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use