Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Aligning functions defined on Cantor sets


Authors: Jo Ford and E. S. Thomas
Journal: Trans. Amer. Math. Soc. 141 (1969), 63-69
MSC: Primary 54.60
DOI: https://doi.org/10.1090/S0002-9947-1969-0243490-7
MathSciNet review: 0243490
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] L. Antoine, Sur l'homéomorphisme de deux figures et de leurs voisinages, J. Math. Pures Appl. (8) 4 (1921), 221-325.
  • [2] B. J. Ball, Jo Ford and E. S. Thomas, Jr., Extending functions defined on a subset of a disk, Proc. Amer. Math. Soc. 20 (1969), 75-80. MR 0235538 (38:3842)
  • [3] R. H. Bing, Tame Cantor sets in $ {E^3}$, Pacific J. Math. 11 (1961), 435-446. MR 0130679 (24:A539)
  • [4] W. A. Blankinship, Generalization of a construction of Antoine, Ann. of Math. (2) 53 (1951), 276-297. MR 0040659 (12:730c)
  • [5] M. Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331-341. MR 0133812 (24:A3637)
  • [6] V. L. Klee, Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30-45. MR 0069388 (16:1030c)
  • [7] R. P. Osborne, Embedding Cantor sets in a manifold, Michigan Math. J. 13 (1966), 57-63. MR 0187225 (32:4678)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.60

Retrieve articles in all journals with MSC: 54.60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1969-0243490-7
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society