Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On inflation-restriction exact sequences in group and Amitsur cohomology


Authors: A. J. Berkson and Alan McConnell
Journal: Trans. Amer. Math. Soc. 141 (1969), 403-413
MSC: Primary 20.50; Secondary 18.00
DOI: https://doi.org/10.1090/S0002-9947-1969-0248230-3
MathSciNet review: 0248230
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] S. A. Amitsur, Simple algebras and cohomology groups of arbitrary fields, Trans. Amer. Math. Soc. 90 (1959), 73-112. MR 0101265 (21:78)
  • [2] -, Homology groups and double complexes for arbitrary fields, J. Math. Soc. Japan, 14 (1962), 1-25. MR 0144941 (26:2481)
  • [3] S. U. Chase, D. K. Harrison and Alex Rosenberg, Galois theory and cohomology of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965). MR 0195922 (33:4118)
  • [4] S. Eilenberg and S. McLane, Cohomology and Galois theory. I, Normality of algebras and Teichmüller's cocycle, Trans. Amer. Math. Soc. 64 (1948), 1-20. MR 0025443 (10:5e)
  • [5] G. Hochschild and J.-P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110-134. MR 0052438 (14:619b)
  • [6] Bodo Paregis and Alex Rosenberg, Addendum to ``Amitsur's complex for inseparable fields", Osaka J. Math. 1 (1964), 33-44. MR 0170927 (30:1162)
  • [7] A. Rosenberg and D. Zelinsky, On Amitsur's complex, Trans. Amer. Math. Soc. 97 (1960), 327-356. MR 0121391 (22:12129)
  • [8] -, Amitsur's complex for inseparable fields, Osaka Math. J. 14 (1962), 219-240. MR 0142604 (26:173)
  • [9] J.-P. Serre, Homologie singulière des espaces fibrés, Ann. of Math. 54 (1951), 425-505. MR 0045386 (13:574g)
  • [10] -, Corps locaux, Hermann, Paris, 1962.
  • [11] O. Teichmüller, Über die sogenannte nichtkommutative Galoissche Theorie und die Relation $ {\xi _{\lambda ,\mu ,\nu }}\;{\xi _{\lambda ,\mu \nu ,\pi }}\;\xi _{\mu ,\nu ,\pi }^\lambda = {\xi _{\lambda ,\mu ,\nu \pi }}\;{\xi _{\lambda \mu ,\nu ,\pi }}$, Deutsche Math. 5 (1940), 138-149. MR 0002858 (2:122d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20.50, 18.00

Retrieve articles in all journals with MSC: 20.50, 18.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1969-0248230-3
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society